展开全部
第一题是换元 t=x^6 ,这样就去掉上下的根号了,
第二题是用了展开,(1+x)^n-1 ~ nx
第二题是用了展开,(1+x)^n-1 ~ nx
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(23)
x^(1/3) -1 = [x^(1/6)]^2 -1^2 =[ x^(1/6) -1] .[ x^(1/6) +1]
x^(1/2) -1 = [x^(1/6)]^3 -1^3 =[ x^(1/6) -1] .[ x^(1/3) +x^(1/6) +1]
lim(x->1) [x^(1/3) -1]/[x^(1/2) -1]
=lim(x->1) [ x^(1/6) -1] .[ x^(1/6) +1] /{ [ x^(1/6) -1] .[ x^(1/3) +x^(1/6) +1] }
=lim(x->1) [ x^(1/6) +1] /[ x^(1/3) +x^(1/6) +1]
=2/3
(24)
y=1/x
y->0+
(1+2y+y^3)^(1/3) = 1+ (2/3)y +o(y)
lim(x->+∞) [ (x^3+2x^2+1)^(1/3) -x ]
=lim(y->0+) [ (1/y^3+2/y^2+1)^(1/3) -1/y ]
=lim(y->0+) [ (1+2y+y^3)^(1/3) -1 ]/y
=lim(y->0+) [ 1+(2/3)y -1 ]/y
=2/3
x^(1/3) -1 = [x^(1/6)]^2 -1^2 =[ x^(1/6) -1] .[ x^(1/6) +1]
x^(1/2) -1 = [x^(1/6)]^3 -1^3 =[ x^(1/6) -1] .[ x^(1/3) +x^(1/6) +1]
lim(x->1) [x^(1/3) -1]/[x^(1/2) -1]
=lim(x->1) [ x^(1/6) -1] .[ x^(1/6) +1] /{ [ x^(1/6) -1] .[ x^(1/3) +x^(1/6) +1] }
=lim(x->1) [ x^(1/6) +1] /[ x^(1/3) +x^(1/6) +1]
=2/3
(24)
y=1/x
y->0+
(1+2y+y^3)^(1/3) = 1+ (2/3)y +o(y)
lim(x->+∞) [ (x^3+2x^2+1)^(1/3) -x ]
=lim(y->0+) [ (1/y^3+2/y^2+1)^(1/3) -1/y ]
=lim(y->0+) [ (1+2y+y^3)^(1/3) -1 ]/y
=lim(y->0+) [ 1+(2/3)y -1 ]/y
=2/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询