求f(x)=xlnx的单调区间
1个回答
展开全部
可以这样证明:f''(x)=1/x>0当x>0时,所以f在(0,+∞)上是上凹的(有些教材凸凹定义可能相反),所以
1)当a≠b时候,
不妨设a<b,于是:
[f(a)+f(b)]/2
>f[(a
b)/2],从而
[alna
blnb]/2>[(a
b)/2
]×ln[(a
b)/2],整理得:
alna
blnb>(a
b)ln[(a
b)/2],也就是:f(a)
(a
b)ln2>f(a
b)-f(b)
2)当a=b时,显而易见取等号,于是由1)2)可得:
f(a)
(a
b)ln2≥f(a
b)-f(b)。
df(x)/x=lnx
x*(1/x)=lnx
1
df(x)/x=0
解得x=1/e
当x>1/e时,f(x)>0;x<1/e,f(x)<0。所以x=1/e为极小值点
f(x)的最小值=1/e×ln(1/e)=-1/e
1)当a≠b时候,
不妨设a<b,于是:
[f(a)+f(b)]/2
>f[(a
b)/2],从而
[alna
blnb]/2>[(a
b)/2
]×ln[(a
b)/2],整理得:
alna
blnb>(a
b)ln[(a
b)/2],也就是:f(a)
(a
b)ln2>f(a
b)-f(b)
2)当a=b时,显而易见取等号,于是由1)2)可得:
f(a)
(a
b)ln2≥f(a
b)-f(b)。
df(x)/x=lnx
x*(1/x)=lnx
1
df(x)/x=0
解得x=1/e
当x>1/e时,f(x)>0;x<1/e,f(x)<0。所以x=1/e为极小值点
f(x)的最小值=1/e×ln(1/e)=-1/e
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |