已知x1^2+x2^2+…+xn^2=(x1+x2+…+xn)^2/n求证:x1=x2=…=xn
展开全部
由柯西不等式,有:
(a1^2+a2^2+a3^2+······+an^2)(x1^2+x2^2+x3^2+······+xn^2)
≧(a1x1+a2x2+a3x3+······+anxn)^2。
令a1=a2=a3=······=an=1,得:
n(x1^2+x2^2+x3^2+······+xn^2)≧(x1+x2+x3+······+xn)^2,
∴x1^2+x2^2+x3^2+······+xn^2≧(1/n)(x1+x2+x3+······+xn)^2。
很明显,当x1/a1=x2/a2=x3/a3=······=xn/an时取等号,∴x1=x2=x3=······=xn。
[下面证明柯西不等式及取等号的条件]
引入二次函数y=(A1x+B1)^2+(A2x+B2)^2+(A3x+B3)^2+······+(Anx+Bn)^2。
显然有:y≧0。
又y=(A1^2+A2^2+A3^2+······+An^2)x^2+2(A1B1+A2B2+A3B3+······+AnBn)x
+(B1^2+B2^2+B3^2+······+Bn^2)。
∴函数的图象是一条开口向上的抛物线,
∴要确保y≧0,就需要方程
(A1^2+A2^2+A3^2+······+An^2)x^2+2(A1B1+A2B2+A3B3+······+AnBn)x
+(B1^2+B2^2+B3^2+······+Bn^2)=0的判别式≦0,
∴[2(A1B1+A2B2+A3B3+······+AnBn)]^2
-4(A1^2+A2^2+A3^2+······+An^2)(B1^2+B2^2+B3^2+······+Bn^2)≦0,
∴(A1^2+A2^2+A3^2+······+An^2)(B1^2+B2^2+B3^2+······+Bn^2)
≧(A1B1+A2B2+A3B3+······+AnBn)^2。
自然,当取等号时,就意味着
(A1x+B1)^2+(A2x+B2)^2+(A3x+B3)^2+······+(Anx+Bn)^2=0,
∴A1x+B1=A2x+B2=A3x+B3=······=Anx+Bn=0,
∴x=B1/A1=B2/A2=B3/A3=······=Bn/An,∴A1/B1=A2/B1=A3/B3=······=An/Bn。
∴当A1/B1=A2/B1=A3/B3=······=An/Bn时,
(A1^2+A2^2+A3^2+······+An^2)(B1^2+B2^2+B3^2+······+Bn^2)
≧(A1B1+A2B2+A3B3+······+AnBn)^2取等号。
(a1^2+a2^2+a3^2+······+an^2)(x1^2+x2^2+x3^2+······+xn^2)
≧(a1x1+a2x2+a3x3+······+anxn)^2。
令a1=a2=a3=······=an=1,得:
n(x1^2+x2^2+x3^2+······+xn^2)≧(x1+x2+x3+······+xn)^2,
∴x1^2+x2^2+x3^2+······+xn^2≧(1/n)(x1+x2+x3+······+xn)^2。
很明显,当x1/a1=x2/a2=x3/a3=······=xn/an时取等号,∴x1=x2=x3=······=xn。
[下面证明柯西不等式及取等号的条件]
引入二次函数y=(A1x+B1)^2+(A2x+B2)^2+(A3x+B3)^2+······+(Anx+Bn)^2。
显然有:y≧0。
又y=(A1^2+A2^2+A3^2+······+An^2)x^2+2(A1B1+A2B2+A3B3+······+AnBn)x
+(B1^2+B2^2+B3^2+······+Bn^2)。
∴函数的图象是一条开口向上的抛物线,
∴要确保y≧0,就需要方程
(A1^2+A2^2+A3^2+······+An^2)x^2+2(A1B1+A2B2+A3B3+······+AnBn)x
+(B1^2+B2^2+B3^2+······+Bn^2)=0的判别式≦0,
∴[2(A1B1+A2B2+A3B3+······+AnBn)]^2
-4(A1^2+A2^2+A3^2+······+An^2)(B1^2+B2^2+B3^2+······+Bn^2)≦0,
∴(A1^2+A2^2+A3^2+······+An^2)(B1^2+B2^2+B3^2+······+Bn^2)
≧(A1B1+A2B2+A3B3+······+AnBn)^2。
自然,当取等号时,就意味着
(A1x+B1)^2+(A2x+B2)^2+(A3x+B3)^2+······+(Anx+Bn)^2=0,
∴A1x+B1=A2x+B2=A3x+B3=······=Anx+Bn=0,
∴x=B1/A1=B2/A2=B3/A3=······=Bn/An,∴A1/B1=A2/B1=A3/B3=······=An/Bn。
∴当A1/B1=A2/B1=A3/B3=······=An/Bn时,
(A1^2+A2^2+A3^2+······+An^2)(B1^2+B2^2+B3^2+······+Bn^2)
≧(A1B1+A2B2+A3B3+······+AnBn)^2取等号。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询