(sin^2x-2sinx*cosx-cos^2x)/(4cos^2x-3sin2x),已知tanx=2,求值

zxqsyr
2012-06-16 · TA获得超过14.4万个赞
知道大有可为答主
回答量:3.3万
采纳率:71%
帮助的人:1.6亿
展开全部
(sin^2x-2sinx*cosx-cos^2x)/(4cos^2x-3sin2x)
=(sin^2x-2sinx*cosx-cos^2x)/(4cos^2x-6sinxcosx)分子分母同时除以cos^2x
=(sin^2x/cos^2x-2sinx*cosx/cos^2x-cos^2x/cos^2x)/(4cos^2x/cos^2x-6sinxcosx/cos^2x)
=(tan^2x-2tanx-1)/(4-6tanx)
=(2^2-2*2-1)/(4-6*2)
=-1/(-8)
=1/8
良驹绝影
2012-06-16 · TA获得超过13.6万个赞
知道大有可为答主
回答量:2.8万
采纳率:80%
帮助的人:1.3亿
展开全部
原式=[sin²x-2sinacosx-cos²x]/[4cos²x-6sinxcosx]
=[tan²x-2tanx-1]/[4-6tanx] 【分子分母同除以cos²x】
=[2²-2×2-1]/[4-6×2]
=1/8
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式