(sin^2x-2sinx*cosx-cos^2x)/(4cos^2x-3sin2x),已知tanx=2,求值
2个回答
展开全部
(sin^2x-2sinx*cosx-cos^2x)/(4cos^2x-3sin2x)
=(sin^2x-2sinx*cosx-cos^2x)/(4cos^2x-6sinxcosx)分子分母同时除以cos^2x
=(sin^2x/cos^2x-2sinx*cosx/cos^2x-cos^2x/cos^2x)/(4cos^2x/cos^2x-6sinxcosx/cos^2x)
=(tan^2x-2tanx-1)/(4-6tanx)
=(2^2-2*2-1)/(4-6*2)
=-1/(-8)
=1/8
=(sin^2x-2sinx*cosx-cos^2x)/(4cos^2x-6sinxcosx)分子分母同时除以cos^2x
=(sin^2x/cos^2x-2sinx*cosx/cos^2x-cos^2x/cos^2x)/(4cos^2x/cos^2x-6sinxcosx/cos^2x)
=(tan^2x-2tanx-1)/(4-6tanx)
=(2^2-2*2-1)/(4-6*2)
=-1/(-8)
=1/8
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询