在等腰梯形ABCD中,已知AD//BC,AB=CD,AE⊥BC于E,∠B=60°,∠DAC=45°,AC=根号6,求梯形的周长.
展开全部
解:过点D作DF⊥BC于F
∵AD//BC,∠DAC=45
∴∠ACB=∠DAC=45
∵AE⊥BC
∴AE=CE
∵AC=√6
∴AE=CE=AC/√2=√6/√2=√3
∵∠B=60
∴AB=AE/(√3/2)=√3/(√3/2)=2,BE=AE/√3=1
∴BC=BE+CE=√3+1
∵AB=CD
∴∠DCB=∠B
∵DF⊥BC
∴∠AEB=∠DFC
∴△ABE≌△DCF (AAS)
∴CF=BE=1
∴EF=CE-CF=√3-1
∵AD//BC,AE⊥BC,DF⊥BC
∴矩形AEFD
∴AD=EF=√3-1
∴梯形周长=AB+BC+CD+AD=2+√3+1+2+√3-1=4+2√3
∵AD//BC,∠DAC=45
∴∠ACB=∠DAC=45
∵AE⊥BC
∴AE=CE
∵AC=√6
∴AE=CE=AC/√2=√6/√2=√3
∵∠B=60
∴AB=AE/(√3/2)=√3/(√3/2)=2,BE=AE/√3=1
∴BC=BE+CE=√3+1
∵AB=CD
∴∠DCB=∠B
∵DF⊥BC
∴∠AEB=∠DFC
∴△ABE≌△DCF (AAS)
∴CF=BE=1
∴EF=CE-CF=√3-1
∵AD//BC,AE⊥BC,DF⊥BC
∴矩形AEFD
∴AD=EF=√3-1
∴梯形周长=AB+BC+CD+AD=2+√3+1+2+√3-1=4+2√3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询