大一高数,求大神
展开全部
x->0
分子
tanx = x+(1/3)x^3+o(x^3)
sinx = x-(1/6)x^3+o(x^3)
tanx - sinx = (1/2)x^3 +o(x^3)
分母
ln(1+x) = x -(1/2)x^2 +o(x^2)
xln(1+x) =x^2 -(1/2)x^3 +o(x^3)
xln(1+x) -x^2= -(1/2)x^3 +o(x^3)
lim(x->0) [√(1+tanx) -√(1+sinx) ]/[xln(1+x) -x^2]
=lim(x->0) [(1+tanx) -(1+sinx) ]/ { [xln(1+x) -x^2] .[√(1+tanx) +√(1+sinx) ] }
=(1/2) lim(x->0) [(1+tanx) -(1+sinx) ]/ [xln(1+x) -x^2]
=(1/2) lim(x->0) (tanx-sinx)/ [xln(1+x) -x^2]
=(1/2) lim(x->0) (1/2)x^3/ [(-1/2)x^3 ]
=-1/2
分子
tanx = x+(1/3)x^3+o(x^3)
sinx = x-(1/6)x^3+o(x^3)
tanx - sinx = (1/2)x^3 +o(x^3)
分母
ln(1+x) = x -(1/2)x^2 +o(x^2)
xln(1+x) =x^2 -(1/2)x^3 +o(x^3)
xln(1+x) -x^2= -(1/2)x^3 +o(x^3)
lim(x->0) [√(1+tanx) -√(1+sinx) ]/[xln(1+x) -x^2]
=lim(x->0) [(1+tanx) -(1+sinx) ]/ { [xln(1+x) -x^2] .[√(1+tanx) +√(1+sinx) ] }
=(1/2) lim(x->0) [(1+tanx) -(1+sinx) ]/ [xln(1+x) -x^2]
=(1/2) lim(x->0) (tanx-sinx)/ [xln(1+x) -x^2]
=(1/2) lim(x->0) (1/2)x^3/ [(-1/2)x^3 ]
=-1/2
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询