学习微积分有何用
3个回答
展开全部
将来进行工程计算,科学分析与研究都是最最基本应用。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
微积分是研究函数的一个数学分支
微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学个分支中,有越来越广泛的应用。特别是计算机的发明更有助于这些应用的不断发展。
微积分学是微分学和积分学的总称,不规则图形面积体积计算, 变力做功,非匀变速运动都会运用到微积分。
微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学个分支中,有越来越广泛的应用。特别是计算机的发明更有助于这些应用的不断发展。
微积分学是微分学和积分学的总称,不规则图形面积体积计算, 变力做功,非匀变速运动都会运用到微积分。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2019-06-05
展开全部
1、对于物理意义
求物体在任意时刻的速度和加速度;反过来,已知物体的加速度表为以时间为变量的函数公式,求速度和距离。这类问题是研究运动时直接出现的,困难在于,所研究的速度和加速度是每时每刻都在变化的。
比如,计算物体在某时刻的瞬时速度,就不能像计算平均速度那样,用移动的距离去除运动的时间,因为在给定的瞬间,物体移动的距离和所用的时间
2、对于科学天文的作用
这个问题本身是纯几何的,而且对于科学应用有巨大的重要性。由于研究天文的需要,光学是十七世纪的一门较重要的科学研究,透镜的设计者要研究光线通过透镜的通道,必须知道光线入射透镜的角度以便应用反射定律
3、对数学的作用
求曲线的长度(如行星在已知时期移动的距离),曲线围成的面积,曲面围成的体积,物体的重心,一个相当大的物体(如行星)作用于另一物体上的引力。
实际上,关于计算椭圆的长度的问题,就难住数学家们,以致有一段时期数学家们对这个问题的进一步工作失败了,直到下一世纪才得到新的结果。又如求面积问题,早在古希腊时期人们就用穷竭法求出了一些面积和体积,如求抛物线在区间
4、对军事的作用
例如炮弹在炮筒里射出,它运行的水平距离,即射程,依赖于炮筒对地面的倾斜角,即发射角。一个“实际”的问题是:求能够射出最大射程的发射角。
求物体在任意时刻的速度和加速度;反过来,已知物体的加速度表为以时间为变量的函数公式,求速度和距离。这类问题是研究运动时直接出现的,困难在于,所研究的速度和加速度是每时每刻都在变化的。
比如,计算物体在某时刻的瞬时速度,就不能像计算平均速度那样,用移动的距离去除运动的时间,因为在给定的瞬间,物体移动的距离和所用的时间
2、对于科学天文的作用
这个问题本身是纯几何的,而且对于科学应用有巨大的重要性。由于研究天文的需要,光学是十七世纪的一门较重要的科学研究,透镜的设计者要研究光线通过透镜的通道,必须知道光线入射透镜的角度以便应用反射定律
3、对数学的作用
求曲线的长度(如行星在已知时期移动的距离),曲线围成的面积,曲面围成的体积,物体的重心,一个相当大的物体(如行星)作用于另一物体上的引力。
实际上,关于计算椭圆的长度的问题,就难住数学家们,以致有一段时期数学家们对这个问题的进一步工作失败了,直到下一世纪才得到新的结果。又如求面积问题,早在古希腊时期人们就用穷竭法求出了一些面积和体积,如求抛物线在区间
4、对军事的作用
例如炮弹在炮筒里射出,它运行的水平距离,即射程,依赖于炮筒对地面的倾斜角,即发射角。一个“实际”的问题是:求能够射出最大射程的发射角。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询