等价无穷小使用条件?

等价无穷小是只有在x趋近0时才能使用?还是什么情况,下面两张图片说的有点不一样,求大神解答... 等价无穷小是只有在x趋近0时才能使用?还是什么情况,下面两张图片说的有点不一样,求大神解答 展开
 我来答
我爱学习112
高粉答主

2021-07-22 · 每个回答都超有意思的
知道大有可为答主
回答量:7259
采纳率:100%
帮助的人:161万
展开全部

条件:

1、被代换的量,在取极限的时候极限值为0;

2、被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。

事实上,等价无穷小是由泰勒公式推导而来,所以运用等价无穷小的结论就是,乘除可以整体换,而加减情况不能换,即使可以,那也是凑巧正确。下面给出什么情况下会“凑巧正确”。

使用等价无穷小有两大原则:

1、乘除极限直接用。

2、加减极限时看分子分母阶数。若使用等价无穷小后分子分母阶数相同,则可用;若阶数不同则不可用。

极限的求法有很多种:

1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值。

2、利用恒等变形消去零因子(针对于0/0型)。

3、利用无穷大与无穷小的关系求极限。

4、利用无穷小的性质求极限。

5、利用等价无穷小替换求极限,可以将原式化简计算。

6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限。

梦色十年
高粉答主

2019-10-23 · 繁杂信息太多,你要学会辨别
知道大有可为答主
回答量:2967
采纳率:100%
帮助的人:95.2万
展开全部

求极限时使用等价无穷小的条件:

1、被代换的量,在去极限的时候极限值为0。

2、被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。

无穷小就是以数零为极限的变量。然而常量是变量的特殊一类,就像直线属于曲线的一种。确切地说,当自变量x无限接近某个值x0(x0可以是0、∞、或是别的什么数)时,函数值f(x)与零无限接近,即f(x)=0,则称f(x)为当x→x0时的无穷小量。

扩展资料:

当x→0时,等价无穷小:

(1)sinx~x 

(2)tanx~x 

(3)arcsinx~x 

(4)arctanx~x 

(5)1-cosx~1/2x^2 

(6)a^x-1~xlna 

(7)e^x-1~x 

(8)ln(1+x)~x 

(9)(1+Bx)^a-1~aBx 

(10)[(1+x)^1/n]-1~1/nx 

极限的求法有很多种:

(1)连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值。

(2)利用恒等变形消去零因子(针对于0/0型)。

(3)利用无穷大与无穷小的关系求极限。

(4)利用无穷小的性质求极限。

(5)利用等价无穷小替换求极限,可以将原式化简计算。

(6)利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限。

(7)利用两个重要极限公式求极限。

(8)利用左、右极限求极限,(常是针对求在一个间断点处的极限值)。

参考资料来源:百度百科-等价无穷小

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
雷帝乡乡

2020-01-06 · TA获得超过3739个赞
知道大有可为答主
回答量:4707
采纳率:74%
帮助的人:1627万
展开全部
无穷小不一定是在x趋于0这个过程,x趋于1时,函数也可能是无穷小,所以等价无穷小代换只要求函数或数列在某个过程下是无穷小,就可以代换
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
伏藉0h0
2019-10-22
知道答主
回答量:20
采纳率:66%
帮助的人:3.4万
展开全部
首先无穷小是函数,当自变量趋于0,则这个函数趋于0
其次等价无穷小是两个无穷小比值极限等于1的情况,这个极限的条件就是x趋于0的时候才成立的
追问
那么当趋近x趋近π时,sinmx与mx等价吗?
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式