展开全部
计算过程如下:
lim [(x+1)/(x-1)]^x
x→+∞
=lim {[1+ 2/(x-1)]^[(x-1)/2]}²·[1+ 2/(x-1)]
x→+∞
=e²·(1+0)
=e²
用到的公式:lim (1+ 1/x)^x=e,x→∞
扩展资料:
如果一个数列能达到这两个要求,则数列收敛于a;而如果一个数列收敛于a,则这两个条件都能满足。
换句话说,如果只知道区间(a-ε,a+ε)之内有{xn}的无数项,不能保证(a-ε,a+ε)之外只有有限项,是无法得出{xn}收敛于a的,在做判断题的时候尤其要注意这一点。
展开全部
解:
首先你要知道一个重要极限:
lim(x->∞) (1+1/x)^x =e
再来做这道题:
lim(x->∞) {[(x+1)/(x-1)]^(x-1)}
=lim(x->∞) [1+2/(x-1)]^(x-1)
=lim(x->∞) { {1+1/[(x-1)/2]}^[(x-1)/2] }^2
={ lim(x->∞) {1+1/[(x-1)/2]}^[(x-1)/2]} }^2
=e^2
希望能帮助你哈
首先你要知道一个重要极限:
lim(x->∞) (1+1/x)^x =e
再来做这道题:
lim(x->∞) {[(x+1)/(x-1)]^(x-1)}
=lim(x->∞) [1+2/(x-1)]^(x-1)
=lim(x->∞) { {1+1/[(x-1)/2]}^[(x-1)/2] }^2
={ lim(x->∞) {1+1/[(x-1)/2]}^[(x-1)/2]} }^2
=e^2
希望能帮助你哈
追问
lim {(1-1/x)^4x} x接近0
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
可化简为lim[(1+2/x-1)^(x-1)]
进而可看成lim[(1+2/a)]^a a趋近无穷大
所以原式=e 的平方
进而可看成lim[(1+2/a)]^a a趋近无穷大
所以原式=e 的平方
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询