
已知函数f(x)=-x2+2ax+1-a在区间[0,1]上有最大值2,求实数a的值
2个回答
展开全部
f(x)=-x^2+2ax+1-a=-(x-a)^2+a^2-a+1在区间[0,1]上有最大值2
当a>=1时函数在[0,1]上是增函数,在x=1时最大,最大值f(1)=a=2
当a<=0时函数在[0,1]上是减函数,在x=0时最大,最大值f(0)=1-a=2
a=-1
当0<a<1时,x=a最大,最大值是a^2-a+1=2
a1=(1-根号5)/2或a2=(1+根号5)/2,都不在0<a<1中,
综上a=2或a=-1
当a>=1时函数在[0,1]上是增函数,在x=1时最大,最大值f(1)=a=2
当a<=0时函数在[0,1]上是减函数,在x=0时最大,最大值f(0)=1-a=2
a=-1
当0<a<1时,x=a最大,最大值是a^2-a+1=2
a1=(1-根号5)/2或a2=(1+根号5)/2,都不在0<a<1中,
综上a=2或a=-1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询