BD,CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,延长AF,AG与直线BC相交,证明

 我来答
萧汀兰缪环
2020-03-28 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.3万
采纳率:32%
帮助的人:777万
展开全部
延长AF,AG与直线BC相交于M、N,
1.三角形ABM中,BF垂直AM,BF平分角ABM,
三角形ABM等到腰,AB=BM,F是AB中点,
同理,在三角形ACN中AC=CN,G是AN中点,
GF是三角形ANM中位线,
GF=1/2(MN)

=1/2(BM+BC+CN)

=1/2(AB+BC+CA)
2.
FG=1/2(AC+AB-BC)。
当AB边最长,
在三角形ACN中,AC=CN,G是AN中点,
在三角形ABM中,AB=BM,F是AM中点,
MN=CN+CM=AC+(BM-BC)=AC+AB-BC,
当BC>AB>AC时,
MN=BM-BN=AB-BN=AB-(BC-AC)=AB+BC-AC,
FG=1/2MN=1/2(AC+AB-BC)。
3.
AB=BM,F是AM中点,
AC=CN,G是AN中点,
FG=1/2MN=1/2(AC+BC-AB)。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式