关于函数的相关概念
展开全部
核心知识
1.函数的定义
(1)函数的传统定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就称y是x的函数,x叫做自变量.
(2)函数的近代定义:设A,B都是非空的数的集合,f:x→y是从A到B的一个对应法则,那么从A到B的映射f:A→B就叫做函数,记作y=f(x),其中x∈A,y∈B,原象集合A叫做函数f(x)的定义域,象集合C叫做函数f(x)的值域.
上述两个定义实质上是一致的,只不过传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发,侧重点不同.函数实质上是从集合A到集合B的一个特殊的映射,其特殊性在于集合A、B都是非空数集.自变量的取值集合叫做函数的定义域,函数值的集合C叫做函数的值域.
这里应该注意的是,值域C并不一定等于集合B,而只能说C是B的一个子集.
2.函数的三要素
定义域A,值域C以及从A到C的对应法则f,称为函数的三要素.由于值域可由定义域和对应法则唯一确定,所以也可以说函数有两要素:定义域和对应法则.两个函数当且仅当定义域与对应法则分别相同时,才是同一函数.
1.函数的定义
(1)函数的传统定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就称y是x的函数,x叫做自变量.
(2)函数的近代定义:设A,B都是非空的数的集合,f:x→y是从A到B的一个对应法则,那么从A到B的映射f:A→B就叫做函数,记作y=f(x),其中x∈A,y∈B,原象集合A叫做函数f(x)的定义域,象集合C叫做函数f(x)的值域.
上述两个定义实质上是一致的,只不过传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发,侧重点不同.函数实质上是从集合A到集合B的一个特殊的映射,其特殊性在于集合A、B都是非空数集.自变量的取值集合叫做函数的定义域,函数值的集合C叫做函数的值域.
这里应该注意的是,值域C并不一定等于集合B,而只能说C是B的一个子集.
2.函数的三要素
定义域A,值域C以及从A到C的对应法则f,称为函数的三要素.由于值域可由定义域和对应法则唯一确定,所以也可以说函数有两要素:定义域和对应法则.两个函数当且仅当定义域与对应法则分别相同时,才是同一函数.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询