为什么若干个初等矩阵的乘积不一定是初等矩阵,但一定是可逆矩阵

 我来答
台玉花奈淑
2020-03-06 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.4万
采纳率:35%
帮助的人:830万
展开全部
1.
方阵ab的秩r(ab)≤min{r(a),r(b)}≤2,a为3*2,b为2*3,他们的秩最大为2,而三阶方阵可逆的充要条件是r(ab)=3,所以ab一定不可逆
2.
初等矩阵为单位阵
i(也有的版本是e,总之是单位阵啦)
作1次初等变换得到的矩阵,设这两个n阶初等矩阵为e1,e2,则由初等矩阵的性质,必存在n阶可逆方阵p1,q1;p2,q2,使得e1=p1·i·q1,
e2=p2·i·q2.(这个性质在书上应该查得到,在初等变换里面的)。所以e1e2=p1·q1·p2·q2。p1,q1,p2,q2均为n阶可逆方阵,故e1e2为n阶可逆方阵。
3.
第三个我没太明白题目的意思。
要是“a为三阶方阵,若a的平方不等于0,|a|=0,则a不等于0,”这个是正确的。三阶方阵a的秩r(a)≥r(a的平方)(秩的性质),a的平方不等于0,则r(a的平方)≥1,故r(a)≥1,所以a不等于0(零矩阵的充要条件是秩等于0)
要是“若a为三阶方阵,则a不等于0,a的平方不等于0,|a|=0”,显然a为三阶方阵是推不出来a不等于0,a的平方不等于0,|a|=0的,比如三阶单位阵。
要是“a为三阶方阵,若a不等于0,a的平方不等于0,则|a|=0”这个也不对,反例仍然可以是三阶单位阵。
要是“a为三阶方阵,若a的平方不等于0,则|a|=0,a不等于0,”这个也不对,反例仍然可以是三阶单位阵。
罗嗦了这么多,希望对你有帮助~期末考试加油啊!
如果觉得不错顺便采纳为最佳答案吧:)
Sievers分析仪
2025-01-06 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
翦来福赏香
2020-03-02 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.4万
采纳率:32%
帮助的人:939万
展开全部
初等矩阵是指
单位矩阵经过一次初等变换得到的矩阵
1
1
*
0
1
=
1
2
0
1
1
1
1
1
这就不是一个初等矩阵
因为任意一个可逆矩阵都可以表示成若干个初等矩阵相乘,这是可逆的充要条件。
所以,乘积一定是可逆矩阵,但不一定是初等矩阵。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式