
(e^(x+y)-e^x)dx+.(e^(x+y)-e^y)dy=0微分方程求通解
2个回答
展开全部
(e^(x+y)-e^x)dx+.(e^(x+y)-e^y)dy=0,
(e^x)(e^y-1)dx+(e^y)(e^x-1)dy=0,
(e^x)dx/(e^x-1)=-(e^y)dy/(e^y-1),
[d(e^x-)]/(e^x-1)=- [d(e^y-1)]/(e^y-1),
两边积分,得ln(e^x-1)+C=-ln(e^y-1),即ln(e^x-1)+ln(e^y-1) +C=0,(C为任意常数)
故ln[(e^x-1)(e^y-1)] +C=0,(C为任意常数).
-----------------------------------------
代入原方程验证,正确。[因(e^x-1).>0,(e^y-1)>0]
(e^x)(e^y-1)dx+(e^y)(e^x-1)dy=0,
(e^x)dx/(e^x-1)=-(e^y)dy/(e^y-1),
[d(e^x-)]/(e^x-1)=- [d(e^y-1)]/(e^y-1),
两边积分,得ln(e^x-1)+C=-ln(e^y-1),即ln(e^x-1)+ln(e^y-1) +C=0,(C为任意常数)
故ln[(e^x-1)(e^y-1)] +C=0,(C为任意常数).
-----------------------------------------
代入原方程验证,正确。[因(e^x-1).>0,(e^y-1)>0]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询