证明 线性代数 线性相关 求详解!
(6)设A是n阶可逆矩阵,A*是A的伴随矩阵,证明(A*)^(-1)=(A^(-1))*...
(6)设 A 是 n 阶可逆矩阵,A*是 A 的伴随矩阵,证明(A*)^(-1)=(A^(-1))*
展开
2个回答
展开全部
(1) (A-E)^(-1)=(B-E)^T
E=(A-E)(B^T-E)
(A-E)B^T=-A
(A-E) B^T 都可逆,所以A也可逆。
(2)由于X1,X2是基础解系,故X1,X2线性无关
假定X1,X2,X*线性相关,则有
X*=k1X1+k2X2 两边左乘A得
AX*=A(k1X1+k2X2)
0≠b=AX*=A(k1X1+k2X2)=0 矛盾
所以 X1,X2,X*线性无关
(3) a)当α1,α2,……αs线性无关,则存在不全为零的k1,k2,……ks (不妨设k1≠0)使
k1α1+k2α2+,……+ksαs=0
α1= -(k2α2+,……+ksαs) /k1 α1被其余向量线性表示
b)当αi=k1α1+,……k(i-1)α(i-1)α(i-1)+k(i+1)α(i+1)α(i+1)+……+ksαs
则k1α1+,……k(i-1)α(i-1)α(i-1)+αi+k(i+1)α(i+1)α(i+1)+……+ksαs=0
α1,α2,……αs线性相关
(4)令kl(α1+α2)+k2(α2+α3)+k3(α3+α1)=0整理得
(k1+k3)α1+(k1+k2)α2+(k2+k3)α3=0
而α1,α2,α3线性无关
故k1+k3=k1+k2=k2+k3=0,得k1=k2=k3=0
所以α1+α2,α2+α3,α3+α1线性无关
(5)同(4)
E=(A-E)(B^T-E)
(A-E)B^T=-A
(A-E) B^T 都可逆,所以A也可逆。
(2)由于X1,X2是基础解系,故X1,X2线性无关
假定X1,X2,X*线性相关,则有
X*=k1X1+k2X2 两边左乘A得
AX*=A(k1X1+k2X2)
0≠b=AX*=A(k1X1+k2X2)=0 矛盾
所以 X1,X2,X*线性无关
(3) a)当α1,α2,……αs线性无关,则存在不全为零的k1,k2,……ks (不妨设k1≠0)使
k1α1+k2α2+,……+ksαs=0
α1= -(k2α2+,……+ksαs) /k1 α1被其余向量线性表示
b)当αi=k1α1+,……k(i-1)α(i-1)α(i-1)+k(i+1)α(i+1)α(i+1)+……+ksαs
则k1α1+,……k(i-1)α(i-1)α(i-1)+αi+k(i+1)α(i+1)α(i+1)+……+ksαs=0
α1,α2,……αs线性相关
(4)令kl(α1+α2)+k2(α2+α3)+k3(α3+α1)=0整理得
(k1+k3)α1+(k1+k2)α2+(k2+k3)α3=0
而α1,α2,α3线性无关
故k1+k3=k1+k2=k2+k3=0,得k1=k2=k3=0
所以α1+α2,α2+α3,α3+α1线性无关
(5)同(4)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询