怎样提高学生的计算能力
4个回答
展开全部
学生的计算能力强弱与否,直接关系到他学习数学的兴趣和效果,因此,使学生学好计算,并形成一定的计算能力至关重要。
一、兴趣是最好的老师
在计算教学中,我们要激发学生的计算兴趣,要让他们爱上计算,乐于去计算。只有这样,我们的计算教学才是成功的。为此,我们在教学中要结合教学的内容,讲究训练形式多样化,寓教于乐,使枯燥的计算教学富有生机。如:可以借用多媒体、卡片以及其他可以利用的学具、教具等,对学生进行视算、听算、抢算、游戏中计算、计算竞赛、自编计算等方式训练。逐渐形成一种持久的计算兴趣。
二、培养学生良好的计算习惯
在做计算题时,往往有的学生有轻视的态度,一些计算题并不是不会做,而是由于注意力不够集中、抄错题、运算粗心、不进行验算等不好的习惯造成错误。所以在计算教学中,注重培养学生良好的计算习惯也很重要。教学中,要想方设法使学生养成计算时精力集中,认真演算,仔细抄写,自觉检查、自觉估算和验算的习惯。另外,教师还要加强书写格式的指导。规范的书写格式可以帮助学生防止错写、漏写数字和运算符号,减少出错的机会,能很好的提高计算准确性。
三、学生理解和掌握有关的计算基础知识,这是提高学生计算能力的前提
在教学中我们不能够急于求成,我们要帮助学生找出原因(如算理不明白、法则不懂、性质不清、定律不熟、公式没掌握等等),查漏补缺,扫清障碍,为进一步学好计算做好基础工作。
总之,计算能力的提高不是一朝一夕就能办到的事情,而是日积月累一步步训练成的,不要觉得计算简单、无趣,养成喜欢计算、善于计算、验算计算的良好习惯。
一、兴趣是最好的老师
在计算教学中,我们要激发学生的计算兴趣,要让他们爱上计算,乐于去计算。只有这样,我们的计算教学才是成功的。为此,我们在教学中要结合教学的内容,讲究训练形式多样化,寓教于乐,使枯燥的计算教学富有生机。如:可以借用多媒体、卡片以及其他可以利用的学具、教具等,对学生进行视算、听算、抢算、游戏中计算、计算竞赛、自编计算等方式训练。逐渐形成一种持久的计算兴趣。
二、培养学生良好的计算习惯
在做计算题时,往往有的学生有轻视的态度,一些计算题并不是不会做,而是由于注意力不够集中、抄错题、运算粗心、不进行验算等不好的习惯造成错误。所以在计算教学中,注重培养学生良好的计算习惯也很重要。教学中,要想方设法使学生养成计算时精力集中,认真演算,仔细抄写,自觉检查、自觉估算和验算的习惯。另外,教师还要加强书写格式的指导。规范的书写格式可以帮助学生防止错写、漏写数字和运算符号,减少出错的机会,能很好的提高计算准确性。
三、学生理解和掌握有关的计算基础知识,这是提高学生计算能力的前提
在教学中我们不能够急于求成,我们要帮助学生找出原因(如算理不明白、法则不懂、性质不清、定律不熟、公式没掌握等等),查漏补缺,扫清障碍,为进一步学好计算做好基础工作。
总之,计算能力的提高不是一朝一夕就能办到的事情,而是日积月累一步步训练成的,不要觉得计算简单、无趣,养成喜欢计算、善于计算、验算计算的良好习惯。
展开全部
一、基础性训练
从小学生不同的年龄心理特点上看,口算的基础要求不同。低中年级主要在一二位数的加法。高年级把一
位数乘两位数的口算作为基础训练效果较好。具体口算要求是,先将一位数与两位数的十位上的数相乘,得到
的三位数立即加上一位数与两位数的个位上的数相乘的积,迅速说出结果。这项口算训练,有数的空间概念的
练习,也有数位的比较,又有记忆训练,在小学阶段可以说是一项数的抽象思维的升华训练,对于促进思维及
智力的发展是很有益的。这项练习可以安排在两段的时间里进行。一是早读课,一是在家庭作业的最后安排一
组。每组是这样划分的:一位数任选一个,对应两位数中个位或十位都含有某一个数的。每组有18道,让学生
先写出算式,口算几遍后再直接写出得数。这样持续一段时间后(一般为2~3个月),其口算的速度、正确率
也就大大提高了。
二、针对性训练
小学高年级数的主体形式已从整数转到了分数。在数的运算中,异分母分数加法是学生费时多又最容易出
差错的地方,也是教与学的重点与难点。这个重点和难点如何攻破呢?经研究比较和教学实践证明,把分数运
算的口算有针对地放在异分母分数加法上是正确的。通过分析归纳,异分母分数加(减)法只有三种情况,每
种情况中都有它的口算规律,学生只要掌握了,问题就迎刃而解了。
1.两个分数,分母中大数是小数倍数的。
如“1/12+1/3”,这种情况,口算相对容易些,方法是:大的分母就是两个分母的公分母,只要把小的分
母扩大倍数,直到与大数相同为止,分母扩大几倍,分子也扩大相同的倍数,即可按同分母分数相加进行口算:1/12+1/3=1/12+4/12=5/12
2.两个分数,分母是互质数的。这种情况从形式上看较难,学生也是最感头痛的,但完全可以化难为易:
它通分后公分母就是两个分母的积,分子是每个分数的分子与另一个分母的积的和(如果是减法就是这两个积的差),如2/7+3/13,口算过程是:公分母是7×13=91,分子是26(2×13)+21(7×3)=47,结果是47/91。
如果两个分数的分子都是1,则口算更快。如“1/7+1/9”,公分母是两个分母的积(63),分子是两个分母
的和(16)。
3.两个分数,两个分母既不是互质数,大数又不是小数的倍数的情况。这种情况通常用短除法来求得公分
母,其实也可以在式子中直接口算通分,迅速得出结果。可用分母中大数扩大倍数的方法来求得公分母。具体
方法是:把大的分母(大数)一倍一倍地扩大,直到是另一个分母小数的倍数为止。如1/8+3/10把大数10,2
倍、3倍、4倍地扩大,每扩大一次就与小数8比较一下,看是否是8的倍数了,当扩大到4倍是40时,是8的倍数
(5倍),则公分母是40,分子就分别扩大相应的倍数后再相加(5+12=17),得数为17/40。
以上三种情况在带分数加减法中口算方法同样适用。
三、记忆性训练
高年级计算内容具有广泛性、全面性、综合性。一些常见的运算在现实生活中也经常遇到,这些运算有的
无特定的口算规律,必须通过强化记忆训练来解决。主要内容有:
1.在自然数中10~24每个数的平方结果;
2.圆周率近似值3.14与一位数的积及与12、15、16、25几个常见数的积;
3.分母是2、4、5、8、10、16、20、25的最简分数的小数值,也就是这些分数与小数的互化。
以上这些数的结果不管是平时作业,还是现实生活,使用的频率很高,熟练掌握、牢记后,就能转化为能
力,在计算时产生高的效率。
四、规律性的训练
1.运算定律的熟练掌握。这方面的内容主要有“五大定律”:加法的交换律、结合律;乘法的交换律、结
合律、分配律。其中乘法分配律用途广形式多,有正用与反用两方面内容,有整数、小数、分数的形式出现。
在带分数与整数相乘时,学生往往忽略了乘法分配律的应用使计算复杂化。如2000/16×8,用了乘法分配律可
以直接口算出结果是1001.5,用化假分数的一般方法计算则耗时多且容易错。此外还有减法运算性质和商不变
性质的运用等。
2.规律性训练。主要是个位上的数是5的两位数的平方结果的口算方法(方法略)。
3.掌握一些特例。如较常遇见的在分数减法中,通分后分子部分不够减,往往减数的分子比被减数的分子
大1、2、3等较小的数时,不管分母有多大,均可以直接口算。如12/7-6/7它的分子只相差1,它差的分子一定
比分母少1,结果不用计算是6/7。又如:194/99-97/99,分子部分相差2,它差的分子就比分母少2,结果就是
97/99。减数的分子比被减数的分子大3、4、5等较小的数时,都可以迅速口算出结果。又如任意两位数与1.5积
的口算,就是两位数再加上它的一半。
五、综合性训练
1.以上几种情况的综合出现;
2.整数、小数、分数的综合出现;
3.四则混合的运算顺序综合训练。
综合性训练有利于判断能力、反应速度的提高和口算方法的巩固。
从小学生不同的年龄心理特点上看,口算的基础要求不同。低中年级主要在一二位数的加法。高年级把一
位数乘两位数的口算作为基础训练效果较好。具体口算要求是,先将一位数与两位数的十位上的数相乘,得到
的三位数立即加上一位数与两位数的个位上的数相乘的积,迅速说出结果。这项口算训练,有数的空间概念的
练习,也有数位的比较,又有记忆训练,在小学阶段可以说是一项数的抽象思维的升华训练,对于促进思维及
智力的发展是很有益的。这项练习可以安排在两段的时间里进行。一是早读课,一是在家庭作业的最后安排一
组。每组是这样划分的:一位数任选一个,对应两位数中个位或十位都含有某一个数的。每组有18道,让学生
先写出算式,口算几遍后再直接写出得数。这样持续一段时间后(一般为2~3个月),其口算的速度、正确率
也就大大提高了。
二、针对性训练
小学高年级数的主体形式已从整数转到了分数。在数的运算中,异分母分数加法是学生费时多又最容易出
差错的地方,也是教与学的重点与难点。这个重点和难点如何攻破呢?经研究比较和教学实践证明,把分数运
算的口算有针对地放在异分母分数加法上是正确的。通过分析归纳,异分母分数加(减)法只有三种情况,每
种情况中都有它的口算规律,学生只要掌握了,问题就迎刃而解了。
1.两个分数,分母中大数是小数倍数的。
如“1/12+1/3”,这种情况,口算相对容易些,方法是:大的分母就是两个分母的公分母,只要把小的分
母扩大倍数,直到与大数相同为止,分母扩大几倍,分子也扩大相同的倍数,即可按同分母分数相加进行口算:1/12+1/3=1/12+4/12=5/12
2.两个分数,分母是互质数的。这种情况从形式上看较难,学生也是最感头痛的,但完全可以化难为易:
它通分后公分母就是两个分母的积,分子是每个分数的分子与另一个分母的积的和(如果是减法就是这两个积的差),如2/7+3/13,口算过程是:公分母是7×13=91,分子是26(2×13)+21(7×3)=47,结果是47/91。
如果两个分数的分子都是1,则口算更快。如“1/7+1/9”,公分母是两个分母的积(63),分子是两个分母
的和(16)。
3.两个分数,两个分母既不是互质数,大数又不是小数的倍数的情况。这种情况通常用短除法来求得公分
母,其实也可以在式子中直接口算通分,迅速得出结果。可用分母中大数扩大倍数的方法来求得公分母。具体
方法是:把大的分母(大数)一倍一倍地扩大,直到是另一个分母小数的倍数为止。如1/8+3/10把大数10,2
倍、3倍、4倍地扩大,每扩大一次就与小数8比较一下,看是否是8的倍数了,当扩大到4倍是40时,是8的倍数
(5倍),则公分母是40,分子就分别扩大相应的倍数后再相加(5+12=17),得数为17/40。
以上三种情况在带分数加减法中口算方法同样适用。
三、记忆性训练
高年级计算内容具有广泛性、全面性、综合性。一些常见的运算在现实生活中也经常遇到,这些运算有的
无特定的口算规律,必须通过强化记忆训练来解决。主要内容有:
1.在自然数中10~24每个数的平方结果;
2.圆周率近似值3.14与一位数的积及与12、15、16、25几个常见数的积;
3.分母是2、4、5、8、10、16、20、25的最简分数的小数值,也就是这些分数与小数的互化。
以上这些数的结果不管是平时作业,还是现实生活,使用的频率很高,熟练掌握、牢记后,就能转化为能
力,在计算时产生高的效率。
四、规律性的训练
1.运算定律的熟练掌握。这方面的内容主要有“五大定律”:加法的交换律、结合律;乘法的交换律、结
合律、分配律。其中乘法分配律用途广形式多,有正用与反用两方面内容,有整数、小数、分数的形式出现。
在带分数与整数相乘时,学生往往忽略了乘法分配律的应用使计算复杂化。如2000/16×8,用了乘法分配律可
以直接口算出结果是1001.5,用化假分数的一般方法计算则耗时多且容易错。此外还有减法运算性质和商不变
性质的运用等。
2.规律性训练。主要是个位上的数是5的两位数的平方结果的口算方法(方法略)。
3.掌握一些特例。如较常遇见的在分数减法中,通分后分子部分不够减,往往减数的分子比被减数的分子
大1、2、3等较小的数时,不管分母有多大,均可以直接口算。如12/7-6/7它的分子只相差1,它差的分子一定
比分母少1,结果不用计算是6/7。又如:194/99-97/99,分子部分相差2,它差的分子就比分母少2,结果就是
97/99。减数的分子比被减数的分子大3、4、5等较小的数时,都可以迅速口算出结果。又如任意两位数与1.5积
的口算,就是两位数再加上它的一半。
五、综合性训练
1.以上几种情况的综合出现;
2.整数、小数、分数的综合出现;
3.四则混合的运算顺序综合训练。
综合性训练有利于判断能力、反应速度的提高和口算方法的巩固。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
怎样提高学生的计算能力?
答:1、教会学生掌握计算方法:如凑十法、破十法、、凑整法等
2、对于学生不懂的题型要多练习。
答:1、教会学生掌握计算方法:如凑十法、破十法、、凑整法等
2、对于学生不懂的题型要多练习。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
叫他们多练些,计算是死功夫,没有技巧。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询