已知:在正方形ABCD中,点E为AD上一点,BF平分∠EBC,交DC于点F,求证:BE=AE+CF.
1个回答
展开全部
延长DA到G,使AG=CF,由于AG=FC,BA=BC,GAB=FCB=90,因此AGB和BFC全等
因此GBA=FBC,BGA=BFC
由于AB//CD,因此ABF=BFC,得到BGA=ABF,
由于BF平分∠EBC,EBF=FBC,而GBA=FBC,EBF=GBA,所以EBF+ABE=GBA+ABE,
GBE=ABF
结合BGA=ABF,得到BGA=GBE
因此EGB为等腰三角形,BE=GE
而GE=AE+GA=AE+CF
所以BE=AE+CF
因此GBA=FBC,BGA=BFC
由于AB//CD,因此ABF=BFC,得到BGA=ABF,
由于BF平分∠EBC,EBF=FBC,而GBA=FBC,EBF=GBA,所以EBF+ABE=GBA+ABE,
GBE=ABF
结合BGA=ABF,得到BGA=GBE
因此EGB为等腰三角形,BE=GE
而GE=AE+GA=AE+CF
所以BE=AE+CF
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询