已知:在正方形ABCD中,点E为AD上一点,BF平分∠EBC,交DC于点F,求证:BE=AE+CF.

 我来答
濮英光焦馥
2020-04-26 · TA获得超过3万个赞
知道大有可为答主
回答量:1.1万
采纳率:27%
帮助的人:704万
展开全部
延长DA到G,使AG=CF,由于AG=FC,BA=BC,GAB=FCB=90,因此AGB和BFC全等
因此GBA=FBC,BGA=BFC
由于AB//CD,因此ABF=BFC,得到BGA=ABF,
由于BF平分∠EBC,EBF=FBC,而GBA=FBC,EBF=GBA,所以EBF+ABE=GBA+ABE,
GBE=ABF
结合BGA=ABF,得到BGA=GBE
因此EGB为等腰三角形,BE=GE
而GE=AE+GA=AE+CF
所以BE=AE+CF
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式