∫sinx/2+sin²x dx怎么积分求解(麻烦带过程)

 我来答
前秀梅赢赋
2020-04-11 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.2万
采纳率:33%
帮助的人:877万
展开全部
解:
∫(cosx/sinx)dx
=∫(1/sinx)dsinx
=(1/sinx)*sinx-∫sinxd(1/sinx)
1/sinx的导数=[(sinx)^(-1)]'=-[(sinx)^-2]*(sinx)'=-cosx/(sinx)^2=-cotx/sinx
这里你解错了
∴原式
=(1/sinx)*sinx-∫sinx(-cotx/sinx)dx
=(1/sinx)*sinx-∫sinx(-cotx/sinx)dx
=1+∫(cotx/sinx)dx
正确的解法为
∫(cosx/sinx)dx
=∫(1/sinx)dsinx
=ln|sinx|+c
用什么分部积分法
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式