电磁感应定律感应电动势正方向判断方法
2个回答
展开全部
右手平展,使大拇指与其余四指垂直,并且都跟手掌在一个平面内。把右手放入磁场中,若磁力线垂直进入手心(当磁感线为直线时,相当于手心面向N极),大拇指指向导线运动方向,则四指所指方向为导线中感应电流的方向。
电磁学中,右手定则判断的主要是与力无关的方向。
感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}
电磁学中,右手定则判断的主要是与力无关的方向。
感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
电动势的产生是由于磁通量的变化而引起的,有的时候切割磁感线也可能不产生感应电动势,
判断产生与否主要由以下几个方法
⒈
感应电流的产生条件和方向判定是高考命题频率较高的内容,特别要注意楞次定律的应用。“阻碍”两字是楞次定律的核心,它的含义可推广为三种表达方式:
⑴
阻碍原磁通量的变化(简化为“增反减同”原则);
⑵
阻碍导体的相对运动(简化为“来拒去留”原则);
⑶
阻碍原电流变化(自感现象)。
⒉
法拉第电磁感应定律是电磁感应的核心内容,也是高考热点之一。该定理定量地给出了感应电动势的计算公式
,概括了感应电动势大小与穿过回路的磁通量变化率成正比这一规律。
⑴
根据不同情况,
可表达成
、
和
几种情况。
⑵
注意磁通量φ、磁通量的变化δφ、磁通量的变化率
三者区别。
⑶
注意
和ε=blv的区别和联系。后者的v可以取平均速度,也可以取瞬时速度。
⒊
电磁感应的应用一般是二个方面:
⑴
电磁感应和电路规律的综合应用。
主要将感应电动势等效于电源电动势,产生感应电动势的导体等效于内电阻,其余问题为电路分析和闭合电路欧姆定律的应用。
⑵
电磁感应和力学规律的综合应用。
此类问题特别注意动态分析。
如图所示,用恒力拉动放在磁场中光滑框架上的
导体时,导体因切割磁感线产生感应电流,并受到安培力f的阻碍作用。其关系可表示如下:
设导体的质量为m,框架回路电阻r不变,其运动方程为
;
即
.
可见,随着切割速度v的增加,导体的加速度a减少。当a=0时,速度达到最大值,v=vmax,这就是导体作匀速运动时的速度v匀=fr/b2l2。
在较复杂的电磁感应现象中,经常涉及求解焦耳热问题,而且具体过程中感应电流是变量,安培力也是变量,但是从能量守恒观点来看,安培力做多少功,就有多少电能转化为其他形式的能,只要弄清能量的转化途径,用能量守恒处理问题可以省去许多细节,解题简捷、方便。
[考题例析]
例题
如图所示,固定于水平桌面上的金属框架cdef,处于竖直向下的匀强磁场中,金属棒ab搁在框架上,可无摩擦滑动。此时adeb构成一个边长为l的正方形。棒的电阻为r,其余部分电阻不计。开始时磁感强度为b。
⑴
若t=0时刻起,磁感强度均匀增加,每秒增量为k同时保持棒静止。求棒中的感应电流。在图上标出感应电流的方向。
⑵
在上述
⑴
情况中,始终保持棒静止,当t=t1s末时需加的垂直于棒的水平拉力为多大?
⑶
若从t=0时刻起,磁感强度逐渐减小,当棒以恒定速度v向右做匀速运动时,可使棒中不产生感应电流,则磁感强度应怎样随时间变化(写出b与t的关系式)?
解析
⑴
由于磁场的磁感强度均匀增加,且
,在边长l的正方形线框中产生感应电动势和感应电流。据法拉第电磁感应定律
。由闭合电路欧姆定律
。据楞次定律可判断线框中感应电流为逆时针方向。
⑵
在
末棒ab仍静止,它受力情况为
,而此时刻
,则
,
。
⑶
当棒中不产生感应电流即
时,据法拉第电磁感应定律
,而δt≠0,所以δφ=0,即回路内总磁通量
保持不变,而在t时刻的磁通量
。故
。
说明
本例是2000年上海高考题。它从b0增加和减少两个方向设置问题。题目不难,概念性强,比较新颖,是考查电磁感应规律的一道好题。
判断产生与否主要由以下几个方法
⒈
感应电流的产生条件和方向判定是高考命题频率较高的内容,特别要注意楞次定律的应用。“阻碍”两字是楞次定律的核心,它的含义可推广为三种表达方式:
⑴
阻碍原磁通量的变化(简化为“增反减同”原则);
⑵
阻碍导体的相对运动(简化为“来拒去留”原则);
⑶
阻碍原电流变化(自感现象)。
⒉
法拉第电磁感应定律是电磁感应的核心内容,也是高考热点之一。该定理定量地给出了感应电动势的计算公式
,概括了感应电动势大小与穿过回路的磁通量变化率成正比这一规律。
⑴
根据不同情况,
可表达成
、
和
几种情况。
⑵
注意磁通量φ、磁通量的变化δφ、磁通量的变化率
三者区别。
⑶
注意
和ε=blv的区别和联系。后者的v可以取平均速度,也可以取瞬时速度。
⒊
电磁感应的应用一般是二个方面:
⑴
电磁感应和电路规律的综合应用。
主要将感应电动势等效于电源电动势,产生感应电动势的导体等效于内电阻,其余问题为电路分析和闭合电路欧姆定律的应用。
⑵
电磁感应和力学规律的综合应用。
此类问题特别注意动态分析。
如图所示,用恒力拉动放在磁场中光滑框架上的
导体时,导体因切割磁感线产生感应电流,并受到安培力f的阻碍作用。其关系可表示如下:
设导体的质量为m,框架回路电阻r不变,其运动方程为
;
即
.
可见,随着切割速度v的增加,导体的加速度a减少。当a=0时,速度达到最大值,v=vmax,这就是导体作匀速运动时的速度v匀=fr/b2l2。
在较复杂的电磁感应现象中,经常涉及求解焦耳热问题,而且具体过程中感应电流是变量,安培力也是变量,但是从能量守恒观点来看,安培力做多少功,就有多少电能转化为其他形式的能,只要弄清能量的转化途径,用能量守恒处理问题可以省去许多细节,解题简捷、方便。
[考题例析]
例题
如图所示,固定于水平桌面上的金属框架cdef,处于竖直向下的匀强磁场中,金属棒ab搁在框架上,可无摩擦滑动。此时adeb构成一个边长为l的正方形。棒的电阻为r,其余部分电阻不计。开始时磁感强度为b。
⑴
若t=0时刻起,磁感强度均匀增加,每秒增量为k同时保持棒静止。求棒中的感应电流。在图上标出感应电流的方向。
⑵
在上述
⑴
情况中,始终保持棒静止,当t=t1s末时需加的垂直于棒的水平拉力为多大?
⑶
若从t=0时刻起,磁感强度逐渐减小,当棒以恒定速度v向右做匀速运动时,可使棒中不产生感应电流,则磁感强度应怎样随时间变化(写出b与t的关系式)?
解析
⑴
由于磁场的磁感强度均匀增加,且
,在边长l的正方形线框中产生感应电动势和感应电流。据法拉第电磁感应定律
。由闭合电路欧姆定律
。据楞次定律可判断线框中感应电流为逆时针方向。
⑵
在
末棒ab仍静止,它受力情况为
,而此时刻
,则
,
。
⑶
当棒中不产生感应电流即
时,据法拉第电磁感应定律
,而δt≠0,所以δφ=0,即回路内总磁通量
保持不变,而在t时刻的磁通量
。故
。
说明
本例是2000年上海高考题。它从b0增加和减少两个方向设置问题。题目不难,概念性强,比较新颖,是考查电磁感应规律的一道好题。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询