平移与旋转

 我来答
丙良歧汝
2019-08-31 · TA获得超过3.5万个赞
知道大有可为答主
回答量:1.4万
采纳率:32%
帮助的人:784万
展开全部
平移与旋转是对刚体而言的,所以运动时物体任意两点之间的距离不变,并且不会变成其镜像。一个点的运动总是可以看成平动的。
平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动!
也可以定义为:平移是物体运动时,物体上每一点的“运动情况相同”的运动。
后一种定义有一点不太好:初始位置不相同得看成“运动情况相同”,但轨迹形状大小相同,却不一定是“运动情况相同”,比如说一个圆环绕环心转动,每一点的轨迹是即形状相同又大小相同的。
旋转是物体运动时,每一个点离同一个点(可以在物体外)的距离不变的运动,称为绕这个点的转动,这个点称为物体的转动中心。所以,它并不一定是绕某个轴的。
高中里的书上有“既作平动又作转动”的说法,要特别澄清一下,“既作平动又作转动”,通常“即不是转动,又不是平动”,只是可以看成两种运动的叠加。
“通常”,是指这样一种情况:绕某一点的转动是可以看成绕另一点的转动加上一个平动的结果的!特别是在转动中心在物体外的时候,常也被看成“既作平动又作转动”,这时候这种运动“是转动,但不是平动”。
还有,有一种常用的情况是这样的:把物体看成绕质心(或几何中心)转动,也就是说常把转动的中心取在质心,或者形体的几何中心,而质心(或几何中心)如果有运动就称为“有平动”,而不管是不是可以看成物体在绕另外点运动。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
敬奕琛田香
2019-04-06 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.4万
采纳率:27%
帮助的人:951万
展开全部
重点:
平移与旋转是对刚体而言的,所以运动时物体任意两点之间的距离不变,并且不会变成其镜像。一个点的运动总是可以看成平动的。
平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动!
也可以定义为:平移是物体运动时,物体上每一点的“运动情况相同”的运动。
后一种定义有一点不太好:初始位置不相同得看成“运动情况相同”,但轨迹形状大小相同,却不一定是“运动情况相同”,比如说一个圆环绕环心转动,每一点的轨迹是即形状相同又大小相同的。
旋转是物体运动时,每一个点离同一个点(可以在物体外)的距离不变的运动,称为绕这个点的转动,这个点称为物体的转动中心。所以,它并不一定是绕某个轴的。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
呼树花阚卿
2019-12-17 · TA获得超过3.8万个赞
知道小有建树答主
回答量:1.4万
采纳率:26%
帮助的人:819万
展开全部
平移与旋转是对刚体而言的,所以运动时物体任意两点之间的距离不变,并且不会变成其镜像。一个点的运动总是可以看成平动的。
平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动!
也可以定义为:平移是物体运动时,物体上每一点的“运动情况相同”的运动。
后一种定义有一点不太好:初始位置不相同得看成“运动情况相同”,但轨迹形状大小相同,却不一定是“运动情况相同”,比如说一个圆环绕环心转动,每一点的轨迹是即形状相同又大小相同的。
旋转是物体运动时,每一个点离同一个点(可以在物体外)的距离不变的运动,称为绕这个点的转动,这个点称为物体的转动中心。所以,它并不一定是绕某个轴的。
高中里的书上有“既作平动又作转动”的说法,要特别澄清一下,“既作平动又作转动”,通常“即不是转动,又不是平动”,只是可以看成两种运动的叠加。
“通常”,是指这样一种情况:绕某一点的转动是可以看成绕另一点的转动加上一个平动的结果的!特别是在转动中心在物体外的时候,常也被看成“既作平动又作转动”,这时候这种运动“是转动,但不是平动”。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式