在三角形ABC中,角A,B,C的对边分别是a,b,c,若2bcosB-ccosA=acosC,则角B的大小为
展开全部
解:(1)acosc,bcosb,ccosa成等差数列,得:acosc+ccosa=2bcosb
先使用正弦定理对原式进行变形:a=2rsina,b=2rsinb,c=2rsinc(r为三角形外接圆半径)
代入有:2rsinacosc+2rsinccosa=2*2rsinbcosb
化简得:sinacosc+sinccosa=2sinbcosb
即:sin(a+c)=sin2b=sin(π-b)=sinb
又因为a,b,c是三角形内角,故有:
2b=π-b,解得b=π/3
先使用正弦定理对原式进行变形:a=2rsina,b=2rsinb,c=2rsinc(r为三角形外接圆半径)
代入有:2rsinacosc+2rsinccosa=2*2rsinbcosb
化简得:sinacosc+sinccosa=2sinbcosb
即:sin(a+c)=sin2b=sin(π-b)=sinb
又因为a,b,c是三角形内角,故有:
2b=π-b,解得b=π/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询