设λ1 λ2 是矩阵A的两个不同特征值,对应的特征向量分别为α1 α2

设λ1、λ2是矩阵A的两个不同特征值,对应的特征向量分别为α1、α2则α1、A(α1+α2)线性无关的充分必要条件是A.λ1=0B.λ2=0C.λ1≠0D.λ2≠0为什么... 设λ1、 λ2 是矩阵A的两个不同特征值,对应的特征向量分别为α1、 α2 则α1、 A(α1+α2)线性无关的充分必要条件是 A. λ1=0 B. λ2=0 C. λ1≠0 D. λ2≠0 为什么? 展开
 我来答
黄依用晓凡
2019-03-24 · TA获得超过3494个赞
知道大有可为答主
回答量:3063
采纳率:27%
帮助的人:208万
展开全部
选A,要使其线性无关。设k1α1+k2*A(α1+α2)=0,k1,k2只有为0时才能试等式成立。
对于
k1α1+k2*(λ1α1+λ2α2)=0
两边同乘α1,则有k1*α1^2+k2λ1*α1^2+0=0(因为λ1、λ2
是矩阵A的两个不同特征值,有α1*α2=0)
则有(k1+k2λ1)α1^2=0,要使式子恒为0,则只有(k1+k2λ1)=0,又因为要线性无关,所以λ1=0,才能使k1恒为0,k1和k2的值也不会随λ1值变化。
继而我们验证当λ1=0时,
k1α1+k2*(λ1α1+λ2α2)=0就变为
k1α1+k2*λ2α2=0,因为α1和α2不可能对应成比例(α1*α2=0),即k1/k2=-λ2α2/α1,,所以只有k1=0和k2=0时使等式成立。
因为λ1为一个常量,若λ1不为0,那么k1=-λ1k2,此时k2是一个不确定值,因而只有令常量为0,使得这个式子恒成立
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式