对坐标的曲线积分的计算方法

对坐标的曲线积分问题计算∫(L)(x+y)dy+(x-y)dx/x^2+y^2-2x+2y,其中L为圆周(x-1)^2+(y+1)^2=4正向... 对坐标的曲线积分问题
计算∫(L) (x+y)dy+(x-y)dx / x^2+y^2-2x+2y ,其中L为圆周(x-1)^2 + (y+1)^2 =4正向
展开
 我来答
杜来伟慧
2019-05-24 · TA获得超过3695个赞
知道大有可为答主
回答量:3111
采纳率:29%
帮助的人:227万
展开全部
1.使用参数法.
令(x-1)/2=cost,(y+1)/2=sint,得:
x=1+2cost,y=-1+2sint,dx=-2sintdt,dy=2costdt,代入积分式得:
∫(L) (x+y)dy+(x-y)dx/(x^2+y^2-2x+2y)
=∫(L) (x+y)dy+(x-y)dx/[(x-1)²+(y+1)²-2]
=(下限0,上限2π)∫[4(cost+sint)cost-4(1+cost-sint)sint]dt/(4-2)
=(下限0,上限2π)∫2(1-sint)dt=4π
2.使用格林理论.
∫(L) (x+y)dy+(x-y)dx/(x^2+y^2-2x+2y)
=∫(L) (x+y)dy+(x-y)dx/[(x-1)²+(y+1)²-2] ...由于圆周是(x-1)²+(y+1)²=4.在圆的周边线上积分时,上面分母中的(x-1)²+(y+1)²=4.所以:
∫(L) (x+y)dy+(x-y)dx/[(x-1)²+(y+1)²-2]
=∫(L) (x+y)dy+(x-y)dx/(4-2)
=(1/2)∫(L) (x+y)dy+(x-y)dx
使用格林理论将上面的线积分转化为面积分:
=(1/2)∫∫(S)[∂(x+y)/∂x-∂(x-y)/∂y]dxdy
=(1/2)∫∫(S)(1+1)dxdy=(1/2)∫∫(S)(2)dxdy
=∫∫(S)dxdy
上面的面积分积分就是这个圆的面积.由于这个圆的半径是2,所以,其面积为πr²=π2²=4π.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式