已知AB=AC,D是BC上任意一点,CG⊥AB,DE⊥AB,DF⊥AC.
1个回答
展开全部
第一问:CG=DE+DF
使用面积法证明。显然S△ABC=S△ABD+S△ACD
又S△ABC=AB×CG/2,S△ABD=AB×DE/2,S△ACD=AC×DF/2,于是AB×CG/2=(AB×DE/2)+(AC×DF/2)
注意AB=AC,所以CG=DE+DF
第二问:
同样使用面积法证明
如果D在BC的延长线上,那么CG=DE-DF(S△ABC=S△ABD-S△ACD)
如果D在CB的延长线上,那么CG=DF-DE(S△ABC=S△ACD-S△ABD)
使用面积法证明。显然S△ABC=S△ABD+S△ACD
又S△ABC=AB×CG/2,S△ABD=AB×DE/2,S△ACD=AC×DF/2,于是AB×CG/2=(AB×DE/2)+(AC×DF/2)
注意AB=AC,所以CG=DE+DF
第二问:
同样使用面积法证明
如果D在BC的延长线上,那么CG=DE-DF(S△ABC=S△ABD-S△ACD)
如果D在CB的延长线上,那么CG=DF-DE(S△ABC=S△ACD-S△ABD)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询