[紧急求助]求级数1/nlnn的敛散性? 30
因为:积分 ∫(2,∞) 1/(xlnx)dx=lnlnx |(2,∞) =∞发散,所以由积分判别法,原级数发散。
∫[2->∞]1/x(lnx)^pdx=∫[2->∞]lnx^(-p)d(lnx)=[1/(1-p)](lnx)^(1-p) | [2->∞]
=[1/(1-p)][(∞)^(1-p)-2^(1-p)]
关键项(∞)^(1-p),当p>1时,为0,p1收敛,p∞]1/xlnxdx有相同的敛散性
∫[2->∞]1/xlnxdx=∫[2->∞]1/lnxd(lnx)=lnlnx | [2->∞] = lnln∞-lnln2发散
故∑1/nlnn发散
经济学中的收敛
分为绝对收敛和条件收敛
绝对收敛,指的是不论条件如何,穷国比富国收敛更快。
条件收敛,指的是技术给定其他条件一样的话,人均产出低的国家,相对于人均产出高的国家,有着较高的人均产出增长率,一个国家的经济在远离均衡状态时,比接近均衡状态时,增长速度快。
2024-04-11 广告
证明方法如下:
∫[2->∞]1/x(lnx)^pdx=∫[2->∞]lnx^(-p)d(lnx)=[1/(1-p)](lnx)^(1-p) | [2->∞]
=[1/(1-p)][(∞)^(1-p)-2^(1-p)]
关键项(∞)^(1-p),当p>1时,为0,p1收敛,p∞]1/xlnxdx有相同的敛散性
∫[2->∞]1/xlnxdx=∫[2->∞]1/lnxd(lnx)=lnlnx | [2->∞] = lnln∞-lnln2发散
故∑1/nlnn发散
扩展资料:
数列1/nlnn收敛,也就是说1/nlnn是有极限的,极限就是0
题目说的是Σ1/nlnn不收敛
也就是1/2ln2+1/3ln3+1/4ln4+……1/nlnn加起来,不收敛,没有极限。
对于任意的X0∈[a,b],由迭代式Xk+1=φ(Xk)所产生的点列收敛,即其当k→∞时,Xk的极限趋于X*,则称Xk+1=φ(Xk)在[a,b]上收敛于X*。
若存在X*在某邻域R={X| |X-X*|<δ},对任何的X0∈R,由Xk+1=φ(Xk)所产生的点列收敛,则称Xk+1=φ(Xk)在R上收敛于X*。
所以由积分判别法,原级数发散。
广告 您可能关注的内容 |