∫∫f((x,y,z)+x)dydz

(这道题是计算对坐标的曲面积分)∫∫[f(x,y,z)+x]dydz+[2f(x,y,z)+y]dzdx+[f(x,y,z)+z]dxdy其中f(x,y,z)为连续函数,... (这道题是计算对坐标的曲面积分)∫∫[f(x,y,z)+x]dydz+[2f(x,y,z)+y]dzdx+[f(x,y,z)+z]dxdy
其中f(x,y,z)为连续函数,Σ是平面x—y+z=1在第四卦限部分的上侧,上式中∫∫下面是Σ,如果不用两类曲面积分的联系该怎么做?能否做出来?请给出详细步骤
急!诸位高手赛赛吧!
展开
 我来答
茹翊神谕者

2021-09-07 · 奇文共欣赏,疑义相与析。
茹翊神谕者
采纳数:3365 获赞数:25161

向TA提问 私信TA
展开全部

简单计算一下即可,答案如图所示

厦门君韦信息技术
2024-11-18 广告
厦门君韦信息技术有限公司成立于2015年,是一家致力于提供专业服务的电子元件分销商,具有业界先进的质量和可靠性、强大的搜索供应实力、专业的服务能力。厦门君韦主要深耕于图像识别技术研究与开发,同时助推于通信、工控、电力、汽车等行业客户的供应链... 点击进入详情页
本回答由厦门君韦信息技术提供
局乔步清馨
2019-09-28 · TA获得超过1045个赞
知道小有建树答主
回答量:1421
采纳率:92%
帮助的人:7.8万
展开全部
运用第一,第二曲面积分间的联系不是很快么?原积分可以直接等于根号3分之(平面x-y+z=1在第四象限的面积)=1/8
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式