不等式的绝对值
展开全部
在不等式应用中,经常涉及质量、面积、体积等,也涉及某些数学对象(如实数、向量)的大小或绝对值。它们都是通过非负数来度量的。
公式:||a|-|b|| ≤|a±b|≤|a|+|b|
性质
|a|表示数轴上的点a与原点的距离叫做数a的绝对值。
两个重要性质:
1、|ab| = |a||b|
 (b≠0)[1]
2、|a|<|b| 可逆推出 |b|>|a|
||a| - |b|| ≤ |a+b| ≤ |a|+|b|,当且仅当 ab≤0 时左边等号成立,ab≥0 时右边等号成立。
另外有:|a-b| ≤ |a|+|-b| = |a|+|-1|*|b| = |a|+|b|
| |a|-|b| | ≤ |a±b| ≤ |a|+|b|[1]
几何意义
1、当a,b同号时它们位于原点的同一边,此时a与﹣b的距离等于它们到原点的距离之和。 [2]
2、当a,b异号时它们分别位于原点的两边,此时a与﹣b的距离小于它们到原点的距离之和。(|a-b|表示a-b与原点的距离,也表示a与b之间的距离)
公式:||a|-|b|| ≤|a±b|≤|a|+|b|
性质
|a|表示数轴上的点a与原点的距离叫做数a的绝对值。
两个重要性质:
1、|ab| = |a||b|
 (b≠0)[1]
2、|a|<|b| 可逆推出 |b|>|a|
||a| - |b|| ≤ |a+b| ≤ |a|+|b|,当且仅当 ab≤0 时左边等号成立,ab≥0 时右边等号成立。
另外有:|a-b| ≤ |a|+|-b| = |a|+|-1|*|b| = |a|+|b|
| |a|-|b| | ≤ |a±b| ≤ |a|+|b|[1]
几何意义
1、当a,b同号时它们位于原点的同一边,此时a与﹣b的距离等于它们到原点的距离之和。 [2]
2、当a,b异号时它们分别位于原点的两边,此时a与﹣b的距离小于它们到原点的距离之和。(|a-b|表示a-b与原点的距离,也表示a与b之间的距离)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询