已知函数f(x)=ax2+ln(x+1).(Ⅰ)当a=14时,求函数f(x)的单...
已知函数f(x)=ax2+ln(x+1).(Ⅰ)当a=14时,求函数f(x)的单调区间;(Ⅱ)当x∈[0,+∞)时,不等式f(x)≤x恒成立,求实数a的取值范围;(Ⅲ)求...
已知函数f(x)=ax2+ln(x+1). (Ⅰ)当a=14时,求函数f(x)的单调区间; (Ⅱ)当x∈[0,+∞)时,不等式f(x)≤x恒成立,求实数a的取值范围; (Ⅲ)求证:(1+22×3)×(1+43×5)×(1+85×9)…(1+2n(2n-1+1)(2n+1))<e(其中,n∈N*,e是自然对数的底数)
展开
展开全部
解答:解:(Ⅰ)当a=
1
4
时,f(x)=
1
4
x2+ln(x+1)(x>-1),
f′(x)=
1
2
x+
1
x+1
=
x2+x+2
2(x+1)
(x>-1),
∵x>-1,x2+x+2=(x+
1
2
)2+
7
4
>0,
∴f′(x)>0,
∴函数f(x)的单调递增区间为(-1,+∞).
(Ⅱ)∵当x∈[0,+∞)时,不等式f(x)≤x恒成立,即ax2+ln(x+1)-x≤0恒成立,
设g(x)=ax2+ln(x+1)-x(x≥0),只需g(x)max≤0即可.
由g′(x)=2ax+
1
x+1
-1=
x[2ax+(2a-1)]
x+1
,
(ⅰ)当a=0时,
g′(x)=-
x
x+1
(x>-1),
当x>0时,g′(x)<0,函数g(x)在(0,+∞)上单调递减,故g(x)≤g(0)=0成立.
(ⅱ)当a>0时,
由g′(x)=
x[2ax+(2a-1)]
x+1
=0,
∵x∈[0,+∞),
∴x=
1
2a
-1,
①若
1
2a
-1<0,即a>
1
2
时,在区间(0,+∞)上,g′(x)>0,则函数g(x)在(0,+∞)上单调递增,
g(x)在[0,+∞)上无最大值(或:当x→+∞时,g(x)→+∞),此时不满足条件;
②若
1
2a
-1≥0,即0<a≤
1
2
时,函数g(x)在(0,
1
2a
-1)上单调递减,在区间(
1
2a
-1,+∞)上单调递增,同样g(x)在[0,+∞)上无最大值,不满足条件.
(ⅲ)当a<0时,g′(x)=
x[2ax+(2a-1)]
x+1
,
∵x∈[0,+∞),
∴2ax+(2a-1)<0,
∴g′(x)<0,故函数g(x)在[0,+∞)上单调递减,故g(x)≤g(0)=0成立.
综上所述,实数a的取值范围是(-∞,0].
(Ⅲ)证明:据(Ⅱ)知当a=0时,ln(x+1)≤x在[0,+∞)上恒成立,
又
2n
(2n-1+1)(2n+1)
=2(
1
2n-1+1
-
1
2n+1
),
∵ln{(1+
2
2×3
)•(1+
4
3×5
)•(1+
8
5×9
)…[1+
2n
(2n-1+1)(2n+1)
]}
=ln(1+
2
2×3
)+ln(1+
4
3×5
)+ln(1+
8
5×9
)+…+ln[1+
2n
(2n-1+1)(2n+1)
]
<
2
2×3
+
4
3×5
+
8
5×9
+…+
2n
(2n-1+1)(2n+1)
=2[(
1
2
-
1
3
)+(
1
3
-
1
5
)+(
1
5
-
1
9
)+…+(
1
2n-1+1
-
1
2n+1
)]
=2(
1
2
-
1
2n+1
)<1,
∵ln{(1+
2
2×3
)•(1+
4
3×5
)•(1+
8
5×9
)…[1+
2n
(2n-1+1)(2n+1)
]}
=ln(1+
2
2×3
)+ln(1+
4
3×5
)+ln(1+
8
5×9
)+…+ln(1+
2n
(2n-1+1)(2n+1)
)
<
2
2×3
+
4
3×5
+
8
5×9
+…+
2n
(2n-1+1)(2n+1)
=2[(
1
2
-
1
3
)+(
1
3
-
1
5
)+(
1
5
-
1
9
)+…+(
1
2n-1+1
-
1
2n+1
)]
=2(
1
2
-
1
2n+1
)<1,
∴(1+
2
2×3
)•(1+
4
3×5
)•(1+
8
5×9
)•…•[1+
2n
(2n-1+1)(2n+1)
]<e.
1
4
时,f(x)=
1
4
x2+ln(x+1)(x>-1),
f′(x)=
1
2
x+
1
x+1
=
x2+x+2
2(x+1)
(x>-1),
∵x>-1,x2+x+2=(x+
1
2
)2+
7
4
>0,
∴f′(x)>0,
∴函数f(x)的单调递增区间为(-1,+∞).
(Ⅱ)∵当x∈[0,+∞)时,不等式f(x)≤x恒成立,即ax2+ln(x+1)-x≤0恒成立,
设g(x)=ax2+ln(x+1)-x(x≥0),只需g(x)max≤0即可.
由g′(x)=2ax+
1
x+1
-1=
x[2ax+(2a-1)]
x+1
,
(ⅰ)当a=0时,
g′(x)=-
x
x+1
(x>-1),
当x>0时,g′(x)<0,函数g(x)在(0,+∞)上单调递减,故g(x)≤g(0)=0成立.
(ⅱ)当a>0时,
由g′(x)=
x[2ax+(2a-1)]
x+1
=0,
∵x∈[0,+∞),
∴x=
1
2a
-1,
①若
1
2a
-1<0,即a>
1
2
时,在区间(0,+∞)上,g′(x)>0,则函数g(x)在(0,+∞)上单调递增,
g(x)在[0,+∞)上无最大值(或:当x→+∞时,g(x)→+∞),此时不满足条件;
②若
1
2a
-1≥0,即0<a≤
1
2
时,函数g(x)在(0,
1
2a
-1)上单调递减,在区间(
1
2a
-1,+∞)上单调递增,同样g(x)在[0,+∞)上无最大值,不满足条件.
(ⅲ)当a<0时,g′(x)=
x[2ax+(2a-1)]
x+1
,
∵x∈[0,+∞),
∴2ax+(2a-1)<0,
∴g′(x)<0,故函数g(x)在[0,+∞)上单调递减,故g(x)≤g(0)=0成立.
综上所述,实数a的取值范围是(-∞,0].
(Ⅲ)证明:据(Ⅱ)知当a=0时,ln(x+1)≤x在[0,+∞)上恒成立,
又
2n
(2n-1+1)(2n+1)
=2(
1
2n-1+1
-
1
2n+1
),
∵ln{(1+
2
2×3
)•(1+
4
3×5
)•(1+
8
5×9
)…[1+
2n
(2n-1+1)(2n+1)
]}
=ln(1+
2
2×3
)+ln(1+
4
3×5
)+ln(1+
8
5×9
)+…+ln[1+
2n
(2n-1+1)(2n+1)
]
<
2
2×3
+
4
3×5
+
8
5×9
+…+
2n
(2n-1+1)(2n+1)
=2[(
1
2
-
1
3
)+(
1
3
-
1
5
)+(
1
5
-
1
9
)+…+(
1
2n-1+1
-
1
2n+1
)]
=2(
1
2
-
1
2n+1
)<1,
∵ln{(1+
2
2×3
)•(1+
4
3×5
)•(1+
8
5×9
)…[1+
2n
(2n-1+1)(2n+1)
]}
=ln(1+
2
2×3
)+ln(1+
4
3×5
)+ln(1+
8
5×9
)+…+ln(1+
2n
(2n-1+1)(2n+1)
)
<
2
2×3
+
4
3×5
+
8
5×9
+…+
2n
(2n-1+1)(2n+1)
=2[(
1
2
-
1
3
)+(
1
3
-
1
5
)+(
1
5
-
1
9
)+…+(
1
2n-1+1
-
1
2n+1
)]
=2(
1
2
-
1
2n+1
)<1,
∴(1+
2
2×3
)•(1+
4
3×5
)•(1+
8
5×9
)•…•[1+
2n
(2n-1+1)(2n+1)
]<e.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询