求一道数学极限题 limx→∞xsin(2x/(x^+1))
2个回答
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
展开全部
你这里的x^+1,是想表达x^2+1么?
在x趋于∞的时候,
显然2x /(x^2+1)=2/(x+1/x)是趋于0的,
而在a趋于0时,
sina是等价于a的,
那么在这里,
sin[2x /(x^2+1)] =sin[2/(x+1/x)]就等价于2/(x+1/x)
所以
原极限
=limx→∞ 2x/(x+1/x)
=limx→∞ 2/(1+1/x^2) 代入1/x^2趋于0
=2
故极限值为 2
在x趋于∞的时候,
显然2x /(x^2+1)=2/(x+1/x)是趋于0的,
而在a趋于0时,
sina是等价于a的,
那么在这里,
sin[2x /(x^2+1)] =sin[2/(x+1/x)]就等价于2/(x+1/x)
所以
原极限
=limx→∞ 2x/(x+1/x)
=limx→∞ 2/(1+1/x^2) 代入1/x^2趋于0
=2
故极限值为 2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询