求积分∫(arctan(1/x)/(1+x^2))dx

 我来答
茹翊神谕者

2023-07-23 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1595万
展开全部

简单分析一下,答案如图所示

厉奥泷孤容
2019-12-23 · TA获得超过1229个赞
知道小有建树答主
回答量:1695
采纳率:100%
帮助的人:7.7万
展开全部
嘿嘿,其实这题很简单.
令y = 1/x、x = 1/y、dx = - 1/y² dy
∫ [arctan(1/x)]/(1 + x²) dx
= ∫ arctany/(1 + 1/y²) * (- 1/y² dy)
= ∫ arctany * y²/(1 + y²) * (- 1/y²) dy
= - ∫ arctany/(1 + y²) dy
= - ∫ arctany d(arctany)
= (- 1/2)(arctany)² + C
= (- 1/2)[arctan(1/x)]² + C
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式