lg|x-1|≤0

设定义域为R的函数f(x)=|lg|x-1||(x不等于1),0(x=1),则关于的方程f(x)^2+bf(x)+c=0有7个不同实数解的充要条件是()A.b0B.b>0... 设定义域为R的函数f(x)=|lg|x-1||(x不等于1),0(x=1),则关于的方程f(x)^2+bf(x)+c=0有7个不同实数解的充要条件是()
A.b0 B.b>0且c
展开
 我来答
恭溶资伦
2020-01-07 · TA获得超过1145个赞
知道小有建树答主
回答量:1829
采纳率:100%
帮助的人:8.8万
展开全部
C:b<0且c=0
等价于关于f(x)的方程[f(x)]^2+bf(x)+c=0有2个解,
f(x)=0或f(x)=k>0
f(x)=0时有三个解:x=1
|lg|x-1||=0,lg|x-1|=0,x-1=±1,x=2或0
f(x)=k>0时有四个解
|lg|x-1||=k,lg|x-1|=±k,|x-1|=10^(±k),x-1=±10^(±k),
x=1±10^(±k)
逆过来,如果关于f(x)的方程有两个不等正实根,
则关于x的方程有8个实根,与题意不合.
如果关于f(x)的方程有一个正实根,一个负实根,
则关于x的方程只有4个实根,与题意不合.
如果关于f(x)的方程有一个负实根,一个零根,
则关于x的方程只有三个实根,与题意不合
如果关于f(x)的方程有两个负实根,
则关于x的方程没有实根,与题意不合.
所以关于f(x)的方程必有一个零根与一个正实根,
b>0且c=0
所以关于x的方程[f(x)]^2+bf(x)+c=0有7个不同的实数解的充分必要条件是b<0且c=0.
因为y^2+by+c=0最多两根
如果只有一根,显然f2(x)+bf(x)+c=0最多只有3根
所以y^2+by+c=0必然有两不等根!
因为0≤y=f(x)
如果y^2+by+c=0是两不等正根,则必然f2(x)+bf(x)+c=0有8个不同的实数解
而y=f(x)=0有3根x=1,x=2,x=0
所以必有一根为y=0,c=0(没有的话不可能有7根)
另外一根y=-b>0,-b=lg(x-1),-b=lg(1-x),-b=-lg(x-1),-b=-lg(1-x)
这样可以解出四根,一共7根!所以当b<0且c=0,关于x的方程f2(x)+bf(x)+c=0有7个不同的实数解
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
灵德
2024-11-19 广告
由化工方面的博士、教授和企业的高级技术人员与管理人员创建的高科技化工企业。主要从事下列产品的开发、生产和相关的技术服务:▼高纯电子化学品(主要为高纯季铵碱 )▼季铵碱系列▼季铵盐系列▼季膦化合物系列▼相转移催化剂(PTC)▼均苯四甲酸 (P... 点击进入详情页
本回答由灵德提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式