
求把下面有关计算机的英语翻译成中文,不要机器翻译的
Wereviewmachinelearningmethodsemployingpositivedefinitekernels.Thesemethodsformulatel...
We review machine learning methods employing positive definite kernels.
These methods formulate learning and estimation problems in a reproducing kernel Hilbert space(RKHS)of functions defined on the data domain,expanded in terms of a kernel.Working in linear spaces of function has the benefit of facilitating the construction and analysis of learning algorithms while at the same time allowing large classes of functions.
The latter include nonlinear functions as well as functions defined on nonvectorial data.
We cover a wide range of methods,ranging from binary classifiers to sophisticated methods for estimation with structured data. 展开
These methods formulate learning and estimation problems in a reproducing kernel Hilbert space(RKHS)of functions defined on the data domain,expanded in terms of a kernel.Working in linear spaces of function has the benefit of facilitating the construction and analysis of learning algorithms while at the same time allowing large classes of functions.
The latter include nonlinear functions as well as functions defined on nonvectorial data.
We cover a wide range of methods,ranging from binary classifiers to sophisticated methods for estimation with structured data. 展开
展开全部
我们回顾了机器学习方法采用正定的内核。
这些方法制定学习和估计问题在重构核希尔伯特空间(再生核希尔伯特)的函数上定义数据领域,扩大方面的内核。函数的线性空间中工作的好处是,促进建设和分析学习算法同时允许大型类的功能。
后者包括非线性函数的函数上定义的数据。
我们覆盖大范围的方法,从二进制分类器到复杂的方法来评估与结构化数据。
这些方法制定学习和估计问题在重构核希尔伯特空间(再生核希尔伯特)的函数上定义数据领域,扩大方面的内核。函数的线性空间中工作的好处是,促进建设和分析学习算法同时允许大型类的功能。
后者包括非线性函数的函数上定义的数据。
我们覆盖大范围的方法,从二进制分类器到复杂的方法来评估与结构化数据。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询