求下列函数的导数(简单)

请大虾给出详细解答过程,谢谢~... 请大虾给出详细解答过程,谢谢~ 展开
lim0619
2012-06-20 · TA获得超过8.3万个赞
知道大有可为答主
回答量:1.7万
采纳率:84%
帮助的人:5923万
展开全部
(1)由y=ln(x+√(x²+a²),
y′=(x+√(x²+a²)′/(x+√(x²+a²)
=(1+x/√(x²+a²)/(x+√(x²+a²)
=(√(x²+a²)-x²/√(x²+a²)/a²,
=1/√(x²+a²)
(2)由y= (sinx)^cosx
lny=cosxln(sinx)
y′/y=(-sinx)ln(sinx)+cosx/sinx×cosx
=-sinxln(sinx)+cos²x/sinx。
∴y′=(sinx)^cosx[-sinxln(sinx)+cos²x/sinx]。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
zhddgt
2012-06-20 · TA获得超过4656个赞
知道大有可为答主
回答量:3139
采纳率:90%
帮助的人:823万
展开全部
(1) y'=[1/(x+√(x²+a²)][1+(1/2)2x(x²+a²)^(-1/2)]=[1/(x+√(x²+a²)][1+x(x²+a²)^(-1/2)]
=[1/(x+√(x²+a²)][(x+√(x²+a²)][1/√(x²+a²)]=1/√(x²+a²).

(2) y=(sinx)^(cosx)
两边取对数,lny=ln[(sinx)^(cosx)],则lny=(cosx)lnsinx,再两边求导数,得
y'/y=(-sinx)lnsinx+(cosx)(1/sinx)cosx=(-sinx)lnsinx+(cosx)²/sinx.
故y'=[(sinx)^(cosx)][(-sinx)lnsinx+(cosx)²/sinx].
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
最真实的_声音
2012-06-20
知道答主
回答量:6
采纳率:0%
帮助的人:6.1万
展开全部
1.[1/(x+...)]*[1+2.../...] 注:...代表根号里面的
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式