隐函数的导数怎么求

 我来答
雪辰奉春兰
2019-11-06 · TA获得超过1320个赞
知道小有建树答主
回答量:1766
采纳率:88%
帮助的人:8.9万
展开全部
对于一个已经确定存在且可导的情况下,我们可以用复合函数求导的链式法则来进行求导。在方程左右两边都对x进行求导,由于y其实是x的一个函数,所以可以直接得到带有
y'
的一个方程,然后化简得到
y'
的表达式。
隐函数导数的求解一般可以采用以下方法:
隐函数左右两边对x求导(但要注意把y看作x的函数);
利用一阶微分形式不变的性质分别对x和y求导,再通过移项求得的值;
把n元隐函数看作(n+1)元函数,通过多元函数的偏导数的商求得n元隐函数的导数。举个例子,若欲求z
=
f(x,y)的导数,那么可以将原隐函数通过移项化为f(x,y,z)
=
0的形式,然后通过(式中f'yf'x分别表示y和x对z的偏导数)来求解。
设方
程p(x,
y)=0确定y是x的函数,
并且可导.
现在可以利用复合函数求导公式可求出隐函数y对x的导数.
例1
方程
x2+y2-r
2=0确定了一个以x为自变量,
以y为因变量的数,
为了求y对x的导数,
将上式两边逐项对x求导,
并将y2看作x的复合函数,
则有
(x2)+
(y2)-
(r
2)=0,

2x+2y
=0,
于是得
.
从上例可以看到,
在等式两边逐项对自变量求导数,
即可得到一个包含y¢的一次方程,
解出y¢,
即为隐函数的导数.
例2
求由方程y2=2px所确定的隐函数y=f(x)的导数.
解:
将方程两边同时对x求导,

2y
y¢=2p,
解出y¢即得
.
例3
求由方程y=x
ln
y所确定的隐函数y=f(x)的导数.
解:
将方程两边同时对x求导,

y¢=ln
y+x×
×y¢,
解出y¢即得
.
例4
由方程x2+x
y+y2=4确定y是x的函数,
求其曲线上点(2,
-2)处的切线方程.
解:
将方程两边同时对x求导,

2x+y+x
y&ce花穿羔费薏渡割杀公辑nt;+2y
y¢=0,
解出y¢即得
.
所求切线的斜率为
k=y¢|x=2,y=-2=1,
于是所求切线为
y-(-2)=×(x-2),
即y=x-4.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
厚星潭振
2019-02-21 · TA获得超过1308个赞
知道小有建树答主
回答量:1682
采纳率:93%
帮助的人:8.3万
展开全部
隐函数
y
=
y(x)
是由方程
F(x,y)
=
0
确定的,所以
求导
时要
“方程两边对x求导”,如圆的方程
    x^2
+
y^2
=
r^2
中视
y=y(x),两边对
x
求导,得
    2x
+
2y*y'
=
0,
整理得
  
y'
=
-x/y。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式