对称式和轮换式有什么区别

 我来答
支杨悉芷兰
2020-01-31 · TA获得超过3819个赞
知道大有可为答主
回答量:3141
采纳率:33%
帮助的人:160万
展开全部
首先要说明的时,轮换式完整的叫法是轮换对称式。因为几何上对称除了轴对称之外,还有中心对称、旋转对称等,相应地,在代数里对称也有较多的对称。这与我们日常语言中的概念是有区别的。
下面指出轮换式和对称式的区别:对称式交换任意两个变量的值,结果不变,如x+y+z;
轮换对称式一定要轮换,例如x->y,y->z,z->x才能使结果不变,如(x-y)/z+(y-z)/x+(z-x)/y,光换两个不行。
第二个问题是分解因式的应用,现举实例如下:
①(a+b+c)^5-a^5-b^5-c^5
②8(a+b+c)^3-(b+c)^3-(c+a)^3-(a+b)^3
③x^2(y+z)+y^2(z+x)+z^2(x+y)-(x^3+y^3+z^3)-2xyz
(1)
分析:
将原式看成X的多项式,可知
当X=-Y时,
原式=(-Y+Y+Z)^5-(-Y)^5-Y^5-Z^5
=0
所以原式有因式(X+Y),因为是对称式,所以原式还有因式(Y+Z),(Z+X)
设原式=(X+Y)(Y+Z)(Z+X)[K(X^2+Y^2+Z^2)+T(XY+YZ+ZX)]
令X=1,Y=1,Z=0,代入得
30=2(2K+T);
令X=1,Y=-1,Z=0,代入得-30=-2(5K-2T)
解得K=5,T=5
所以原式=5(X+Y)(Y+Z)(Z+X)(X^2+Y^2+Z^2+XY+YZ+ZX)
(2)
分析
设原式=[(2A+2B+2C)^3-(B+C)^3]-[(C+A)^3+(A+B)^3]
然后利用立方差和立方和公式展开,并令整理后的式子
=(2A+B+C)(M-N)
其中由轮换多项式可确定(M-N)中含有(A+2B+C),(A+B+2C)
比较系数的原式=3(2A+B+C)
(A+2B+C)(A+B+2C)
(3)分析
设X=Y+Z,则有
原式=(X+Y)^3+Y^2(2Z+Y)+Z^2(2Y+Z)-[(Y+Z)^3+Y^3+Z^3]-2(Y+Z)YZ
=(Y+Z)^3+2Y^2Z+Y^3+2YZ^2+Z^3-(Y+Z)^3-Y^3-Z^3-2Y^2Z-2YZ^2=0
所以原式有因式(Y+Z-X),因为对称式,故也有因式(Z+X-Y),(X+Y-Z)
设原式=K(Y+Z-X)(X+Y-Z)(Z+X-Y)
其中K为待定系数,比较等式两边XYZ项的系数
右=K(1-1+1-1-1-1)=-2K
,左=-2
所以解得K=1
所以原式=(Y+Z-X)(X+Y-Z)(Z+X-Y)
对称与轮换对称很重要,以后一直到大学都很有用。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式