求解高数微积分题一道!需要详细解题步骤 万分感激!!!!!!!!

设图形由y=lnx,y=0,x=1,x=e所围成。1.求图形的面积A2.求图形绕y轴旋转所成的旋转体的体积V.... 设图形由y=lnx,y=0,x=1,x=e所围成。1.求图形的面积A 2.求图形绕y轴旋转所成的旋转体的体积V. 展开
 我来答
乙璟福铃
2020-02-04 · TA获得超过3729个赞
知道大有可为答主
回答量:3159
采纳率:25%
帮助的人:243万
展开全部
面积S=∫lnxdx(上限e,下限1)=xlnx-∫xd(lnx)=xlnx-∫x*(1/x)dx=xlnx-x代入上下限可得
S=e*lne-e-1*ln1+1=1
曲线x=g(y)围绕y轴旋转的旋转体体积V=π∫[g(y)]^2dy
y=lnx,x=e^y
V=π∫(e^y)^2dy(上限lne,下限ln1)
=π∫e^(2y)dy
=π*e^(2y)/2代入上下限
V=(π/2)*(e^2-1)
求体积应该是这个公式,如果你有高数书,最好看着书做,书上有类似的例题
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式