斐波那契数列通项公式是什么?
1个回答
展开全部
公式:
数列从第三项开始,每一项都等于前两项之和,它的通项公式为:[(1+√5)/2]^n /√5 - [(1-√5)/2]^n /√5 【√5表示根号5】
解得x=(1+sqr(5))/2
而Fn/Fn+1=1/x=(sqr(5)-1)/2
这里用了极限的方法斐波那契数列的通项公式
Fn=[(1+√5)/2]^n /√5 - [(1-√5)/2]^n /√5
特性:
从第二项开始(构成一个新数列,第一项为1,第二项为2,……),每个偶数项的平方都比前后两项之积多1,每个奇数项的平方都比前后两项之积少1。如:第二项1的平方比它的前一项1和它的后一项2的积2少1,第三项2的平方比它的前一项1和它的后一项3的积3多1。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询