用数学归纳法证明:1+1/2^2+1/3^2+...+1/n^2<(2n-1)/n
1个回答
展开全部
证明:1+1/2^2+1/3^2+...+1/n^2<(2n-1)/n
(n>=2,n属于N*)
1)1+1/2^2=5/4
<
3/2
2)
设:1+1/2^2+1/3^2+...+1/k^2<(2k-1)/k,
1+1/2^2+1/3^2+...+1/k^2+1/(k+1)^2<(2k-1)/k+1/(k+1)^2
=(2k^3+4k^2+2k-k^2-2k-1+k)/k(k+1)^2
=2-(k-1)/k(k+1)<[2(k+1)-1]/(k+1)
也就是如果n=k时成立能推出n=k+1也成立
所以,1+1/2^2+1/3^2+...+1/n^2<(2n-1)/n
(n>=2,n属于N*)
1)1+1/2^2=5/4
<
3/2
2)
设:1+1/2^2+1/3^2+...+1/k^2<(2k-1)/k,
1+1/2^2+1/3^2+...+1/k^2+1/(k+1)^2<(2k-1)/k+1/(k+1)^2
=(2k^3+4k^2+2k-k^2-2k-1+k)/k(k+1)^2
=2-(k-1)/k(k+1)<[2(k+1)-1]/(k+1)
也就是如果n=k时成立能推出n=k+1也成立
所以,1+1/2^2+1/3^2+...+1/n^2<(2n-1)/n
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询