计量经济学中, 简述普通最小二乘法的基本思想
2个回答
展开全部
普通最小二乘法是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。
∑(X--X平)(Y--Y平)
=∑(XY--X平Y--XY平+X平Y平)
=∑XY--X平∑Y--Y平∑X+nX平Y平
=∑XY--nX平Y平--nX平Y平+nX平Y平
=∑XY--nX平Y平
∑(X --X平)^2
=∑(X^2--2XX平+X平^2)
=∑X^2--2nX平^2+nX平^2
=∑X^2--nX平^2
高斯使用的最小二乘法的方法发表于1809年他的著作《天体运动论》中。
法国科学家勒让德于1806年独立发明“最小二乘法”,但因不为世人所知而默默无闻。
勒让德曾与高斯为谁最早创立最小二乘法原理发生争执。
1829年,高斯提供了最小二乘法的优化效果强于其他方法的证明,因此被称为高斯-马尔可夫定理。
∑(X--X平)(Y--Y平)
=∑(XY--X平Y--XY平+X平Y平)
=∑XY--X平∑Y--Y平∑X+nX平Y平
=∑XY--nX平Y平--nX平Y平+nX平Y平
=∑XY--nX平Y平
∑(X --X平)^2
=∑(X^2--2XX平+X平^2)
=∑X^2--2nX平^2+nX平^2
=∑X^2--nX平^2
高斯使用的最小二乘法的方法发表于1809年他的著作《天体运动论》中。
法国科学家勒让德于1806年独立发明“最小二乘法”,但因不为世人所知而默默无闻。
勒让德曾与高斯为谁最早创立最小二乘法原理发生争执。
1829年,高斯提供了最小二乘法的优化效果强于其他方法的证明,因此被称为高斯-马尔可夫定理。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询