小学一年级的数学应用题的复习资料谁有?
8个回答
展开全部
一、一般应用题
[复习目标]
1、熟练地解答简单应用题,能根据题目意思说出数量关系式。明确算理。
2、能用分步列式和综合算式两种解法解答一般应用题,理解每一步算式所表示的实际意义,会用综合法和分析法来分析应用题的解题思路。
[知识回顾]
1、简单应用题
简单应用题只含有一种数量关系,只用一步运算解答的应用题。但它是解答所有应用题的基础。
(1)求两数的和
加法 是把两个数合并成一个数的运算。有两种情况:一种是知道两个部分数,求总数;另一种是已知一个数是多少,还知道另一个数比它多多少,求另一个数。
(2)求两个数的差
减法 是已知两个数的和与其中一个加数,求另一个加数的运算,它是加法的逆运算。有三种情况:一是已知两个数的总数和其中一个数是多少,求另一个数;二是已知两数分别是多少,求其中一数比另一数多(或少)多少;三是已知一个数和另一个数比它少多少,求另一个数(较小数),都是用减法计算。
(3)求两数的积
乘法 是求几个相同加数的和的简便运算。一种是已知每份数和份数是多少,求总数;另一种是求一个数的几倍是多少。
(4)求两个数的商
除法 是已知两个因数的积和其中一个因数,求另一个因数的运算。一种是把一个数平均分成几份,求一份是多少;另一种是求一个数里包含有几个另一个数。前者称为“等分除法”,后者称为“包含除法”。
乘、除法应用题的数量关系可以概括为:
每份数×份数=总数
总数÷份数=每分数
总数÷每份数=份数
2、一般复合应用题
复合应用题是含有两个或两个以上的基本数量关系,就是用两步或两步以上的运算进行解答的应用题。其实,复合应用题是由几个简单应用题组合成的,所以解答复合应用题是以简单应用题为基础的。
解答这类应用题的关键是在分析数量关系的基础上,把复合应用题分解成几个简单应用题。解题步骤如下:
(1) 弄清题意,找已知条件和要求的问题;
(2) 分析题里的数量关系找出中间问题,据此确定先算什么,再算什么,最后算什么;
(3) 列出算式进行计算;
(4) 检验并写出答案。
[试题分析]
[例1]我校在开展“手拉手”活动中,去年“六、一”仅五(1)班61人就给琼江小学捐款111.52元,平均每人捐款约多少元?
分析:就是把111.52元平均分成61份, 求每份是多少。在计算时,发现111.52除以61不能除尽,因为钱的最小使用单位是”分”所以应保留两位小数。
111.52÷61≈1.83(元)
答:平均每人捐款约1.83元。
[例2]红星自行车厂原计划30天生产自行车2000辆,前20天每天生产了60辆,要按时完成任务,后10天平均每天生产多少辆?
分析:根据“前20天每天生产了60辆”,就可以求出已经生产了多少辆,再根据“计划生产2000辆”就可以求出还要生产多少辆,最后求出后10天平均每天生产多少辆。
列综合算式计算:
(2000-60×20)÷10
=(2000-1200)÷10
=800÷10
=80(辆)
答:后10天平均每天生产80辆。
http://wenku.baidu.com/view/84667fd6b14e852458fb57b3.html###这里面有
[复习目标]
1、熟练地解答简单应用题,能根据题目意思说出数量关系式。明确算理。
2、能用分步列式和综合算式两种解法解答一般应用题,理解每一步算式所表示的实际意义,会用综合法和分析法来分析应用题的解题思路。
[知识回顾]
1、简单应用题
简单应用题只含有一种数量关系,只用一步运算解答的应用题。但它是解答所有应用题的基础。
(1)求两数的和
加法 是把两个数合并成一个数的运算。有两种情况:一种是知道两个部分数,求总数;另一种是已知一个数是多少,还知道另一个数比它多多少,求另一个数。
(2)求两个数的差
减法 是已知两个数的和与其中一个加数,求另一个加数的运算,它是加法的逆运算。有三种情况:一是已知两个数的总数和其中一个数是多少,求另一个数;二是已知两数分别是多少,求其中一数比另一数多(或少)多少;三是已知一个数和另一个数比它少多少,求另一个数(较小数),都是用减法计算。
(3)求两数的积
乘法 是求几个相同加数的和的简便运算。一种是已知每份数和份数是多少,求总数;另一种是求一个数的几倍是多少。
(4)求两个数的商
除法 是已知两个因数的积和其中一个因数,求另一个因数的运算。一种是把一个数平均分成几份,求一份是多少;另一种是求一个数里包含有几个另一个数。前者称为“等分除法”,后者称为“包含除法”。
乘、除法应用题的数量关系可以概括为:
每份数×份数=总数
总数÷份数=每分数
总数÷每份数=份数
2、一般复合应用题
复合应用题是含有两个或两个以上的基本数量关系,就是用两步或两步以上的运算进行解答的应用题。其实,复合应用题是由几个简单应用题组合成的,所以解答复合应用题是以简单应用题为基础的。
解答这类应用题的关键是在分析数量关系的基础上,把复合应用题分解成几个简单应用题。解题步骤如下:
(1) 弄清题意,找已知条件和要求的问题;
(2) 分析题里的数量关系找出中间问题,据此确定先算什么,再算什么,最后算什么;
(3) 列出算式进行计算;
(4) 检验并写出答案。
[试题分析]
[例1]我校在开展“手拉手”活动中,去年“六、一”仅五(1)班61人就给琼江小学捐款111.52元,平均每人捐款约多少元?
分析:就是把111.52元平均分成61份, 求每份是多少。在计算时,发现111.52除以61不能除尽,因为钱的最小使用单位是”分”所以应保留两位小数。
111.52÷61≈1.83(元)
答:平均每人捐款约1.83元。
[例2]红星自行车厂原计划30天生产自行车2000辆,前20天每天生产了60辆,要按时完成任务,后10天平均每天生产多少辆?
分析:根据“前20天每天生产了60辆”,就可以求出已经生产了多少辆,再根据“计划生产2000辆”就可以求出还要生产多少辆,最后求出后10天平均每天生产多少辆。
列综合算式计算:
(2000-60×20)÷10
=(2000-1200)÷10
=800÷10
=80(辆)
答:后10天平均每天生产80辆。
http://wenku.baidu.com/view/84667fd6b14e852458fb57b3.html###这里面有
参考资料: http://www.5ykj.com/shti/liu/27860_2.htm
展开全部
教学目标
(一)通过求一个数比另一个数少几的应用题和求比一个数少几的数的应用题对比,学生更好地掌握它们的分析思路和解题方法.
(二)初步培养学生的分析、推理能力.
教学重点和难点
重点:通过分析,找出这两种应用题的相同点和不同点.
难点:明白两种应用题都是用减法计算,但它们所表示的意义并不一样的道理.
教学过程设计
(一)复习准备
1.口算.
26+3027-940-437+10
60-4038+656+440+28
2.按要求摆圆.
师:第一排摆6个圆,第二排摆4个圆.想一想,可以提什么问题?怎样列式?
学生经过思考以后,可能提出这样的问题.
(1)两排一共有多少个圆?6+4=10.
(2)第一排比第二排多几个或第二排比第一排少几个?6-4=2.
(3)第一排去掉几个和第二排同样多或第二排再添上几个和第一排同样多?6-4=2.
(二)学习新课
出示例7.
(1)有红花9朵,黄花6朵,黄花比红花少几朵?
(2)有红花9朵,黄花比红花少3朵.黄花有几朵?
1.指名读题,找出已知条件和问题.
师:从哪句话知道红花多,还是黄花多?
生:第(1)题从问话“黄花比红花少几朵?”第(2)题从第2个已知条件“黄花比红花少3朵”都能知道红花比黄花多,黄花比红花少.
2.解答第(1)题.
(1)让学生用红花和黄花摆出条件和问题,教师出示意图:
②分析:
师:这道题的问题是求什么?
生:这道题要求黄花比红花少几朵?
师:这个问题与已知条件有什么关系呢?
生:分析这个问题,可以知道黄花少,红花多,要求黄花比红花少几朵,必须知道黄花有几朵,还要知道红花有几朵.
师:既然红花的朵数多,我们应该把红花的朵数怎么办呢?请同学们边摆边说.(学生操作完,请一名学生叙述)
生:黄花比红花少,红花多.红花的朵数可以分成两部分,一部分是跟黄花同样多的,另一部分是比黄花多的,从红花的朵数里去掉跟黄花同样多的部分,剩下的就是红花比黄花多的部分,也就是黄花比红花少的朵数.
师:用什么方法计算?
生:用减法计算.
③列式计算:(教师板书)
9-6=3(朵)
口答:黄花比红花少3朵.
3.解答第(2)题.
①让学生把刚才摆的第(1)题图,改变成第(2)题图.(事先给每位学生准备一张纸条代表问题放到6朵红花下面)教师先出示有9朵红花的图.
②分析
师:这道题的问题是求什么?(黄花比红花少几朵)
生:黄花有多少朵?黄花比红花少3朵.
师:这句话是什么意思?
生:黄花少,红花多.
师:红花的朵数多,我们就可以把红花的朵数怎么办?
生:把红花的朵数分成两部分,一部分是和黄花同样多的朵数,另一部分是红花比黄花多的朵数,也就是黄花比红花少的朵数.(让每位同学边摆边说)
教师在学生说的基础上把红花的朵数分两部分,并让学生指一指哪一部分是同样多的朵数,哪一部分是黄花比红花少的朵数,哪一部分是所求的黄花的朵数.教师根据学生说的,完成示意图,把图中各部分标出.
生:从红花的朵数里去掉红花比黄花多的,得到红花和黄花同样多的,也就是黄花的朵数.
师:用什么方法计算?
生:用减法计算.
③列式计算:(教师板书)
9-3=6(朵)
口答:黄花有6朵.
4.分组讨论.
师:刚才我们解答的这两道题有什么相同的地方?有什么不同的地方?
教师在学生叙述的基础上加以概括:
相同点:
①第一个已知条件相同,都是有红花9朵.
②两道题都是已知黄花比红花少,也就是红花多.红花可以分成两部分.一部分是跟黄花同样多的,另一部分是比黄花多的.
③都是用减法计算.
不同点:
①有一个已知条件不同,第(1)题知道有黄花6朵,第(2)题知道黄花比红花少3朵.
②要求的问题不同,第(1)题的问题是求黄花比红花少几朵?第(2)题的问题是求黄花有几朵?也就是第(1)题的第二个已知条件是第(2)题的所求问题.第(1)题的所求问题是第(2)题的一个已知条件.
③虽然都是用减法计算,但它们所表示的意义不一样.第(1)题求黄花比红花少几朵,要从红花的朵数里去掉和黄花同样多的部分,剩下的就是比黄花多的部分,也就是黄花比红花少的朵数.第(2)题求有多少朵黄花,要从红花朵数里去掉比黄花多的部分,剩下的就是和黄花同样多的部分,也就是黄花的朵数.
④所列算式不同,结果不同.
第(1)题:9-3=6(朵)
第(2)题:9-6=3(朵)
(三)巩固反馈
1.教科书第105页“做一做”.
(1)让学生自己读题,找出已知条件和问题.
(2)教师提示,学生思考.
师:第(1)题求象比熊少几只怎样想?第(2)题求象有几只怎样想?
(3)同桌同学互相说说这两道题有什么相同的地方和不同的地方?
(4)做在书上,及时订正.
2.根据本班男、女生人数仿例7编题后解答.
3.课堂作业.
(四)总结
师:今天我们学习的是两种应用题的对比,解题的关键是注意分清楚题里的数量关系,找到那个较大的数,再做进一步分析,最后解答.
课堂教学设计说明
这节课讲授两种应用题的对比,重点是在正确解答的基础上,引导学生进一步探究两种应用题的相同点和不同点.
复习时,教师说明摆的要求,发挥学生思维水平,让学生自己提出问题,便于与后面教学联系.通过操作,使学生对相比较的两个数量之间的数量关系获得初步表象,然后引导学生分析应用题里的数量关系,掌握解题思路.教师精心设计了一个问题:“从哪句话知道红花多,还是黄花多?”主要是培养学生思维能力,养成认真审题的习惯.最后引导学生比较两种应用题的异同,使学生清楚地认识到,虽然两道题都是用减法计算,但它们所表示的意义不一样.这样,既培养了学生的思维能力,又初步发展了学生的分析问题和解题的能力.
(一)通过求一个数比另一个数少几的应用题和求比一个数少几的数的应用题对比,学生更好地掌握它们的分析思路和解题方法.
(二)初步培养学生的分析、推理能力.
教学重点和难点
重点:通过分析,找出这两种应用题的相同点和不同点.
难点:明白两种应用题都是用减法计算,但它们所表示的意义并不一样的道理.
教学过程设计
(一)复习准备
1.口算.
26+3027-940-437+10
60-4038+656+440+28
2.按要求摆圆.
师:第一排摆6个圆,第二排摆4个圆.想一想,可以提什么问题?怎样列式?
学生经过思考以后,可能提出这样的问题.
(1)两排一共有多少个圆?6+4=10.
(2)第一排比第二排多几个或第二排比第一排少几个?6-4=2.
(3)第一排去掉几个和第二排同样多或第二排再添上几个和第一排同样多?6-4=2.
(二)学习新课
出示例7.
(1)有红花9朵,黄花6朵,黄花比红花少几朵?
(2)有红花9朵,黄花比红花少3朵.黄花有几朵?
1.指名读题,找出已知条件和问题.
师:从哪句话知道红花多,还是黄花多?
生:第(1)题从问话“黄花比红花少几朵?”第(2)题从第2个已知条件“黄花比红花少3朵”都能知道红花比黄花多,黄花比红花少.
2.解答第(1)题.
(1)让学生用红花和黄花摆出条件和问题,教师出示意图:
②分析:
师:这道题的问题是求什么?
生:这道题要求黄花比红花少几朵?
师:这个问题与已知条件有什么关系呢?
生:分析这个问题,可以知道黄花少,红花多,要求黄花比红花少几朵,必须知道黄花有几朵,还要知道红花有几朵.
师:既然红花的朵数多,我们应该把红花的朵数怎么办呢?请同学们边摆边说.(学生操作完,请一名学生叙述)
生:黄花比红花少,红花多.红花的朵数可以分成两部分,一部分是跟黄花同样多的,另一部分是比黄花多的,从红花的朵数里去掉跟黄花同样多的部分,剩下的就是红花比黄花多的部分,也就是黄花比红花少的朵数.
师:用什么方法计算?
生:用减法计算.
③列式计算:(教师板书)
9-6=3(朵)
口答:黄花比红花少3朵.
3.解答第(2)题.
①让学生把刚才摆的第(1)题图,改变成第(2)题图.(事先给每位学生准备一张纸条代表问题放到6朵红花下面)教师先出示有9朵红花的图.
②分析
师:这道题的问题是求什么?(黄花比红花少几朵)
生:黄花有多少朵?黄花比红花少3朵.
师:这句话是什么意思?
生:黄花少,红花多.
师:红花的朵数多,我们就可以把红花的朵数怎么办?
生:把红花的朵数分成两部分,一部分是和黄花同样多的朵数,另一部分是红花比黄花多的朵数,也就是黄花比红花少的朵数.(让每位同学边摆边说)
教师在学生说的基础上把红花的朵数分两部分,并让学生指一指哪一部分是同样多的朵数,哪一部分是黄花比红花少的朵数,哪一部分是所求的黄花的朵数.教师根据学生说的,完成示意图,把图中各部分标出.
生:从红花的朵数里去掉红花比黄花多的,得到红花和黄花同样多的,也就是黄花的朵数.
师:用什么方法计算?
生:用减法计算.
③列式计算:(教师板书)
9-3=6(朵)
口答:黄花有6朵.
4.分组讨论.
师:刚才我们解答的这两道题有什么相同的地方?有什么不同的地方?
教师在学生叙述的基础上加以概括:
相同点:
①第一个已知条件相同,都是有红花9朵.
②两道题都是已知黄花比红花少,也就是红花多.红花可以分成两部分.一部分是跟黄花同样多的,另一部分是比黄花多的.
③都是用减法计算.
不同点:
①有一个已知条件不同,第(1)题知道有黄花6朵,第(2)题知道黄花比红花少3朵.
②要求的问题不同,第(1)题的问题是求黄花比红花少几朵?第(2)题的问题是求黄花有几朵?也就是第(1)题的第二个已知条件是第(2)题的所求问题.第(1)题的所求问题是第(2)题的一个已知条件.
③虽然都是用减法计算,但它们所表示的意义不一样.第(1)题求黄花比红花少几朵,要从红花的朵数里去掉和黄花同样多的部分,剩下的就是比黄花多的部分,也就是黄花比红花少的朵数.第(2)题求有多少朵黄花,要从红花朵数里去掉比黄花多的部分,剩下的就是和黄花同样多的部分,也就是黄花的朵数.
④所列算式不同,结果不同.
第(1)题:9-3=6(朵)
第(2)题:9-6=3(朵)
(三)巩固反馈
1.教科书第105页“做一做”.
(1)让学生自己读题,找出已知条件和问题.
(2)教师提示,学生思考.
师:第(1)题求象比熊少几只怎样想?第(2)题求象有几只怎样想?
(3)同桌同学互相说说这两道题有什么相同的地方和不同的地方?
(4)做在书上,及时订正.
2.根据本班男、女生人数仿例7编题后解答.
3.课堂作业.
(四)总结
师:今天我们学习的是两种应用题的对比,解题的关键是注意分清楚题里的数量关系,找到那个较大的数,再做进一步分析,最后解答.
课堂教学设计说明
这节课讲授两种应用题的对比,重点是在正确解答的基础上,引导学生进一步探究两种应用题的相同点和不同点.
复习时,教师说明摆的要求,发挥学生思维水平,让学生自己提出问题,便于与后面教学联系.通过操作,使学生对相比较的两个数量之间的数量关系获得初步表象,然后引导学生分析应用题里的数量关系,掌握解题思路.教师精心设计了一个问题:“从哪句话知道红花多,还是黄花多?”主要是培养学生思维能力,养成认真审题的习惯.最后引导学生比较两种应用题的异同,使学生清楚地认识到,虽然两道题都是用减法计算,但它们所表示的意义不一样.这样,既培养了学生的思维能力,又初步发展了学生的分析问题和解题的能力.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
你可以在书店里面找座应用题的书,帮你复习一下。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
有很多题目的、字太多了、现在不想打
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
[每份数×份数=总数
总数÷份数=每分数
总数÷每份数=份数]一年级学过这些么?
总数÷份数=每分数
总数÷每份数=份数]一年级学过这些么?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询