∫dx/((x^2+1)(x^2+x)
1个回答
展开全部
设1/(x^2+1)(x^2+x)=(Ax+B)/(x^2+1)+C/(x+1)+D/x,
用待定系数法解之,得:A=-1/2,B=-1/2,C=-1/2,D=1,
原式=(-1/2)∫
(x+1)dx/(x^2+1)-(1/2)
∫dx/(x+1)+
∫dx/x
=(-1/4)∫
d(x^2+1)/(x^2+1)-(1/2)∫
dx/(x^2+1)-(1/2)
∫dx/(x+1)+
∫dx/x
=-(1/4)ln(x^2+1)-(1/2)arctanx-1/2ln|x+1|+ln|x|+C.
用待定系数法解之,得:A=-1/2,B=-1/2,C=-1/2,D=1,
原式=(-1/2)∫
(x+1)dx/(x^2+1)-(1/2)
∫dx/(x+1)+
∫dx/x
=(-1/4)∫
d(x^2+1)/(x^2+1)-(1/2)∫
dx/(x^2+1)-(1/2)
∫dx/(x+1)+
∫dx/x
=-(1/4)ln(x^2+1)-(1/2)arctanx-1/2ln|x+1|+ln|x|+C.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询