急。。。请问下这个定积分怎么做啊? 20
∫1/√(a-x)(x-y)dx积分上限是a下限是y,这个题目我看了答案很有技巧性,请问各位大神,有什么好方法没啊?注:是根号下(a-x)(x-y)...
∫1/√(a-x)(x-y)dx 积分上限是a下限是y,这个题目我看了答案 很有技巧性,请问各位大神,有什么好方法没啊?注:是根号下(a-x)(x-y)
展开
1个回答
展开全部
解:
∫﹙y→a﹚1/√(a-x)(x-y)dx 【令a-x=u,x=a-u,dx=-du,0≤u≤a-y】
=∫﹙0→a-y﹚1/√u(a-y-u) d﹙-u ﹚
再令u=﹙a-y﹚sin²θ,
∴du=﹙a-y﹚2sinθcosθdθ
∵0≤u≤a-y
∴0≤sin²θ≤1
∴-1≤sinθ≤1
取-π/2 ≤θ≤π/2
∴
∫﹙y→a﹚【1/√(a-x)(x-y)】dx
=∫﹙0→a-y﹚【1/√u(a-y-u) 】 d﹙-u ﹚
=-∫﹙-π/2 →π/2﹚﹛1/【 [√(a-y﹚sin²θ ]× [√﹙a-y﹚cos²θ ]】﹜ ×﹙a-y﹚2sinθcosθdθ
=-∫﹙-π/2 →π/2﹚﹛1/【(a-y﹚﹙√sin²θ﹚﹙√cos²θ ﹚】﹜ ×﹙a-y﹚2sinθcosθdθ
∵-π/2 →0,√sin²θ=-sinθ,√cos²θ=cosθ,
0→π/2,√sin²θ=sinθ,√cos²θ=cosθ,
∴
-∫﹙-π/2 →π/2﹚﹛1/【(a-y﹚﹙√sin²θ﹚﹙√cos²θ ﹚】﹜ ×﹙a-y﹚2sinθcosθdθ
=-∫﹙-π/2 →0﹚﹛1/【(a-y﹚﹙-sinθcosθ ﹚】﹜ ×﹙a-y﹚2sinθcosθdθ-∫﹙0 →π/2﹚﹛1/【(a-y﹚sinθcosθ】 ﹜×﹙a-y﹚2sinθcosθdθ
=2θ |(-π/2 →0)-2θ |(0→π/2 )
=0
∫﹙y→a﹚1/√(a-x)(x-y)dx 【令a-x=u,x=a-u,dx=-du,0≤u≤a-y】
=∫﹙0→a-y﹚1/√u(a-y-u) d﹙-u ﹚
再令u=﹙a-y﹚sin²θ,
∴du=﹙a-y﹚2sinθcosθdθ
∵0≤u≤a-y
∴0≤sin²θ≤1
∴-1≤sinθ≤1
取-π/2 ≤θ≤π/2
∴
∫﹙y→a﹚【1/√(a-x)(x-y)】dx
=∫﹙0→a-y﹚【1/√u(a-y-u) 】 d﹙-u ﹚
=-∫﹙-π/2 →π/2﹚﹛1/【 [√(a-y﹚sin²θ ]× [√﹙a-y﹚cos²θ ]】﹜ ×﹙a-y﹚2sinθcosθdθ
=-∫﹙-π/2 →π/2﹚﹛1/【(a-y﹚﹙√sin²θ﹚﹙√cos²θ ﹚】﹜ ×﹙a-y﹚2sinθcosθdθ
∵-π/2 →0,√sin²θ=-sinθ,√cos²θ=cosθ,
0→π/2,√sin²θ=sinθ,√cos²θ=cosθ,
∴
-∫﹙-π/2 →π/2﹚﹛1/【(a-y﹚﹙√sin²θ﹚﹙√cos²θ ﹚】﹜ ×﹙a-y﹚2sinθcosθdθ
=-∫﹙-π/2 →0﹚﹛1/【(a-y﹚﹙-sinθcosθ ﹚】﹜ ×﹙a-y﹚2sinθcosθdθ-∫﹙0 →π/2﹚﹛1/【(a-y﹚sinθcosθ】 ﹜×﹙a-y﹚2sinθcosθdθ
=2θ |(-π/2 →0)-2θ |(0→π/2 )
=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询