设在区间[a,b]上p(x)非负,f(x)g(x)为单调递增函数

证明这个不等式... 证明这个不等式 展开
mscheng19
2012-06-22 · TA获得超过1.3万个赞
知道大有可为答主
回答量:3835
采纳率:100%
帮助的人:2225万
展开全部
你怎么还在问啊?还没有人回答吗?
记D=【a b】*【a,b】,因为p(x)p(y)(f(x)-f(y))(g(x)-g(y))>=0,(x,y)位于D时。于是
二重积分_D p(x)p(y)(f(x)-f(y))(g(x)-g(y))dxdy>=0。将括号打开,移项得
二重积分_D 【p(x)p(y)f(x)g(x)+p(x)p(y)f(y)g(y)】dxdy
>=二重积分_D 【p(x)p(y)f(x)g(y)+p(x)p(y)f(y)g(x)】dxdy。
注意到左边第一项 化重积分为累次积分
=积分(从a到b)p(x)f(x)g(x)dx 积分(从a到b)p(y)dy
对y的积分已经是一个实数了,可以提出来并将积分变量用x表示
=积分(从a到b)p(x)f(x)g(x)dx 积分(从a到b) p(x)dx
类似其余三项都这么做,然后不等式两边除以2得要证不等式。
更多追问追答
追问
就是不懂怎么冒出来p(y),f(y)的
追答
这只是一种证明技巧而已。多做题就能掌握这种解题技巧了。
很多积分题都是用这种方法来证的。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式