如图所示,在锐角三角形ABC中,AB=4倍根号2,角BAC=45度,角BAC的平分线交B分别是AD和AB上动点,
如图所示,在锐角三角形ABC中,AB=4倍根号2,角BAC=45度,角BAC的平分线交B分别是AD和AB上动点,则BM+MN的最小值是?(请忽略那条BE)有人说可以做点B...
如图所示,在锐角三角形ABC中,AB=4倍根号2,角BAC=45度,角BAC的平分线交B分别是AD和AB上动点,则BM+MN的最小值是?(请忽略那条BE)
有人说可以做点B关于AD的对称点B',由对称的性质和等腰三角形的性质可知B'落在AC上,然后再过点B'做AB的垂线交AD于M,交AB于N,此时的M、N就是满足题意的M、N” 那为什么此时M、N就满足题意?求解呀,答得好了可以追加 。 展开
有人说可以做点B关于AD的对称点B',由对称的性质和等腰三角形的性质可知B'落在AC上,然后再过点B'做AB的垂线交AD于M,交AB于N,此时的M、N就是满足题意的M、N” 那为什么此时M、N就满足题意?求解呀,答得好了可以追加 。 展开
展开全部
按你上面的作法作出B',M,N
此时△BB'M也是等腰三角形,这个很好证明的。
∴BM=B'M
∴BM+MN=B'M+MN=BN,下面来证明为什么BN的长度是最小的,
假定M点不是最符合的,那么在AD上另做一点M',假定BM'+MN'是最小的
在△B'M'N中,根据三角形三边关系,两边之和一定大于第三边,
∴BM'+MN'>BN,这就跟上面的假定矛盾了。所以BN一定是最小的,即BM+MN最小
补充:其实这道题跟经常画图的一道题很像。一条河的一侧有A、B两个村庄,要在河中建一个供水站P,使得P点到A、B的距离之和最短。想想P点是怎么作出来的。还要明白为什么那样作图。
上面那道题应该可以说是根据这个改编的。祝你数学学得更好!
此时△BB'M也是等腰三角形,这个很好证明的。
∴BM=B'M
∴BM+MN=B'M+MN=BN,下面来证明为什么BN的长度是最小的,
假定M点不是最符合的,那么在AD上另做一点M',假定BM'+MN'是最小的
在△B'M'N中,根据三角形三边关系,两边之和一定大于第三边,
∴BM'+MN'>BN,这就跟上面的假定矛盾了。所以BN一定是最小的,即BM+MN最小
补充:其实这道题跟经常画图的一道题很像。一条河的一侧有A、B两个村庄,要在河中建一个供水站P,使得P点到A、B的距离之和最短。想想P点是怎么作出来的。还要明白为什么那样作图。
上面那道题应该可以说是根据这个改编的。祝你数学学得更好!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |