齐次线性方程组一定有解吗?

 我来答
枕流看娱乐
活跃答主

2022-04-12 · 万物皆可问,万物皆可答
知道小有建树答主
回答量:813
采纳率:100%
帮助的人:12.7万
展开全部

一定有解。

齐次线性方程组可以直接看出一定有解,因为当变量都为零时等式一定成立。印证了向量部分的一条性质“零向量可由任何向量线性表示”。

当齐次线性方程组有唯一零解时,是指等式中的变量只能全为零才能使等式成立,而当齐次线性方程组有非零解时,存在不全为零的变量使上式成立;但向量部分中判断向量组是否线性相关、无关的定义也正是由这个等式出发的。

解的特征:

齐次线性方程组一定有解又可以分为两种情况:有唯一零解;有非零解。

故向量与线性方程组在此又产生了联系——齐次线性方程组是否有非零解对应于系数矩阵的列向量组是否线性相关。可以设想线性相关、无关的概念就是为了更好地讨论线性方程组问题而提出的。


广告
点击进入详情页
本回答由提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式