圆周率π怎么算?

 我来答
楸楸楸楸
2022-08-09 · TA获得超过217个赞
知道答主
回答量:60
采纳率:100%
帮助的人:1.5万
展开全部
说起圆周率π相信大家都不陌生,从小学和初中时期起我们就开始接触它了,现在我们都知道圆的周长与直径之比是π≈3.14,知道它是一个无理数,也是一个超越数。


其实,人们对于圆周率π的理解经历了一个相当漫长的过程,从π的出现到确定它是无理数,人类花了近4千年的时间。最早关于圆周率的历史记录可以追溯到约公元前20世纪,一块古巴比伦石匾清楚地记载了圆周率π=25/8=3.125。同一时期的古埃及文物,莱因德数学纸草书也表明圆周率等于分数16/9的平方,约等于3.1605,埃及人似乎在更早的时候就知道圆周率了。

英国作家 John Taylor (1781–1864) 在其名著《金字塔》(《The Great Pyramid: Why was it built, and who built it?》)中指出,造于公元前2500年左右的胡夫金字塔和圆周率有关。例如,金字塔的周长和高度之比等于圆周率的两倍,正好等于圆的周长和半径之比。公元前800至600年成文的古印度宗教巨著《百道梵书》也显示了圆周率等于分数339/108,约等于3.139。


金字塔与圆周率π

一直到公元前3世纪,古希腊著名数学家、物理学家阿基米德才将圆周率正确地计算到小数点后3位。此后经过五百多年的时间,人们才将π值从3.141推进到3.14159(魏晋时期中国数学家刘徽)。又过了两百多年,南北朝时期的数学家祖冲之用盈朒两数表示圆周率的数值在3.1415926和3.1415927之间,将π的精度计算到小数点后7位,并且在之后的800多年里祖冲之计算出的π值都是准确的。


一直到15世纪初阿拉伯数学家卡西求得圆周率17位精确小数值,打破祖冲之保持近千年的纪录。德国数学家鲁道夫·范·科伊伦于1596年将π值算到20位小数值,后投入毕生精力,于1610年算到小数后35位数,该数值被用他的名字称为鲁道夫数。

此后,圆周率π的计算从几何法时期进入到分析法时期。这一时期人们开始利用无穷级数或无穷连乘积求π,摆脱可割圆术的繁复计算。无穷乘积式、无穷连分数、无穷级数等各种π值表达式纷纷出现,使得π值计算精度迅速增加。第一个快速算法由英国数学家梅钦提出,1706年梅钦计算π值突破100位小数大关,他利用了如下公式:


其中arctan x可由泰勒级数算出,类似的方法称为“梅钦类公式”。 斯洛文尼亚数学家Jurij Vega于1789年得出π的小数点后140位,其中只有137位是正确的,这个世界纪录维持了五十年。到1948年英国的弗格森和美国的伦奇共同发表了π的808位小数值,成为人工计算圆周率值的最高纪录。

再后来,电子计算机的出现使π值的计算有了突飞猛进的发展。1949年,美国制造的世上首台计算机—ENIAC(电子数字积分计算机)在阿伯丁试验场启用了。次年,里特韦斯纳、冯纽曼和梅卓普利斯利用这部电脑,计算出π的2037个小数位,这部电脑只用了70小时就完成了这项工作。

五年后,IBM NORC(海军兵器研究计算机)只用了13分钟,就算出π的3089个小数位。科技不断进步,电脑的运算速度也越来越快,在60年代至70年代,随着美、英、法的电脑科学家不断地进行电脑上的竞争,π的值也越来越精确。在1973年,Jean Guilloud和Martin Bouyer以电脑CDC 7600发现了π的第一百万个小数位。


世界上第一台计算机ENIAC

1989年美国哥伦比亚大学研究人员计算出π值小数点后4.8亿位数,后又继续算到小数点后10.1亿位数。2010年1月,法国工程师法布里斯·贝拉将圆周率算到小数点后2万7千亿位。2010年8月,日本计算机奇才近藤茂利用家用计算机和云计算相结合,计算出圆周率到小数点后5万亿位。一年后,近藤茂又刷新了之前5万亿位的记录,将圆周率计算到了小数点后10万亿位。

去年圆周率日(3月14日),谷歌工程师Emma Iwao 利用谷歌运算引擎计算出精确度达31.4万亿位的圆周率。而有人可能也会不禁发问了,人类对圆周率π如此痴迷,如今已计算到了小数点后30多万亿位,那它到底有什么实际作用?


除了我们熟知的圆周率π用来解决圆、球体等几何问题,其实在其他方面也有不少的应用。比如天文学中关于宇宙可观测范围的计算,只要精确到小数点后39位,误差就不会超过一个原子的体积;又如在计算机信息加密领域,重要的文件资料利用圆周率完全随机的数字对数据加密,被破解的几率微乎其微;再如测试计算机的性能,π对于计算机来说就像是一把标尺,计算π的数值越精确,计算机的性能就越强。除此之外,它在三角函数、微积分、交流电、无线电传播计算等多个领域都有着重要的应用。


也有的科学家认为圆周率是宇宙的代码,它无限不规律的特性和宇宙极为相似,如果能计算出π的数值,人类就能够揭开宇宙真正的奥秘。

其实到了现在,圆周率算到后面具体是什么数字已经不重要了,重要的是,小小的一个π,在人类文明发展史中引领着我们不断探索的步伐,甚至可以说,它反映着人类工具、思想和智慧的进化,更多的是一种不断思考和不断追求的精神
麋鹿时往前走oo
科技发烧友

2022-12-07 · 有一些普通的科技小锦囊
知道大有可为答主
回答量:4194
采纳率:100%
帮助的人:587万
展开全部
由于圆周率π的定义是“圆的周长与直径的比值”,为此圆周率π必须根据“圆的周长与直径的比(并非正6x2ⁿ边形的周长与过中心点的对角线的比)”来计算它。
圆周率π的数值3分之6+2√3就是根据“圆的周长与直径的比6+2√3比3”算出来的3.1547005383...。
如果求圆周率π采用"正6x2ⁿ边形的周长与过中心点的对角线的比值",那么π的数值3.1415926...就属于正6x2ⁿ边率。正6x2ⁿ边形的周长与对角线的比值叫做正6x2ⁿ边率。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式