y=﹙1-X²﹚½的原函数
1个回答
展开全部
原函数为y=(1/2)*arcsinx+(1/2)*x*(1-x^2)^(1/2)
令x=sint,[即t=arcsint]
∫(1-sint^2)^(1/2)d(sin2t)=∫cost^2dt
=∫(1+cos2t)/2 dt=(1/2)*t+(1/4)*sin2t [ 将t换为x的表达式]
=(1/2)*arcsinx+(1/2)*x*(1-x^2)^(1/2)
令x=sint,[即t=arcsint]
∫(1-sint^2)^(1/2)d(sin2t)=∫cost^2dt
=∫(1+cos2t)/2 dt=(1/2)*t+(1/4)*sin2t [ 将t换为x的表达式]
=(1/2)*arcsinx+(1/2)*x*(1-x^2)^(1/2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
威孚半导体技术
2024-08-19 广告
2024-08-19 广告
威孚(苏州)半导体技术有限公司是一家专注生产、研发、销售晶圆传输设备整机模块(EFEM/SORTER)及核心零部件的高科技半导体公司。公司核心团队均拥有多年半导体行业从业经验,其中技术团队成员博士、硕士学历占比80%以上,依托丰富的软件底层...
点击进入详情页
本回答由威孚半导体技术提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询