在三角形ABC中,AD=1\3AB,CE=2\5AC,求三角形ADE与四边形DBCE的面积比.

 我来答
游戏解说17
2022-06-25 · TA获得超过947个赞
知道小有建树答主
回答量:313
采纳率:0%
帮助的人:63.1万
展开全部
从E和C分别向AB做垂线EM,CN,得三角形ADE的高EM,三角形ABC的高CN
所以EM平行于CN
EM:CN=AE:AC=(AC-EC):AC
因为CE=2\5AC
所以EM:CN=3/5
又AD=1\3AB
由三角形=底*高/2得出
三角形ADE的面积=AD*EM/2
三角形ABC的面积=AB*CN/2
求三角形ADE与四边形DBCE的面积比=(AD*EM/2):(AB*CN/2)
=AD*EM:AB*CN=(AD:AB)*(EM:CN)=(1/3)*(3/5)=1:5
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式