这个定积分如何计算?
10个回答
展开全部
我是虚单位吗?如果是,先带入d(xix^2)=(12ix)dx,然后展开多项式计算。结果是2i/3
∫yln(1xy)dx
这就是Newton-Leibnith公式,积分变量分别取上下限时,被积函数的定积分等于其原函数的差!
1.sint在对称区间上的积分为0
如何计算这个定积分右转我计算它等于π/4
如何计算这个定积分?求微分后请参考下图:或者将被积函数拆分为两个幂函数之和,然后直接使用幂函数的积分公式
lnx没有?
∫yln(1xy)dx
这就是Newton-Leibnith公式,积分变量分别取上下限时,被积函数的定积分等于其原函数的差!
1.sint在对称区间上的积分为0
如何计算这个定积分右转我计算它等于π/4
如何计算这个定积分?求微分后请参考下图:或者将被积函数拆分为两个幂函数之和,然后直接使用幂函数的积分公式
lnx没有?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
对于有前后两幅调拱机构的摊铺机,其前拱拱度应调节的比后拱略大为宜。经验表明,一般人工接长调宽的熨平板,其前后拱之差为3~4mm,液压伸缩调宽的熨平板,差值以2mm为宜。前拱过大,中间部分混合料较多,于是出现中间紧密并刮出亮痕和纵向撕裂状条纹。反之,前拱过小,甚至小于后拱,中间部分的混合料偏少,于是就会出现中间疏松,两侧紧密并被刮出亮痕和纵向撕裂状条纹。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
不必要积出来, 也积不出来。通分后用洛必达法则。
原式 = lim<x→0>[∫<0, x>e^(t^2)dt - x]/x^3 (0/0)
= lim<x→0>[e^(x^2) - 1]/(3x^2) = lim<x→0>(x^2)/(3x^2) = 1/3
原式 = lim<x→0>[∫<0, x>e^(t^2)dt - x]/x^3 (0/0)
= lim<x→0>[e^(x^2) - 1]/(3x^2) = lim<x→0>(x^2)/(3x^2) = 1/3
更多追问追答
追问
怎么同分的
好像通不出3x^2吧
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
你如何计算这个定积分?向左拐|向右拐,我来计算它等于π/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
lim(x->0) [ (1/x^3)∫(0->x) e^(t^2) dt - 1/x^2 ]
=lim(x->0) [ ∫(0->x) e^(t^2) dt - x ]/x^3
洛必达
=lim(x->0) [ e^(x^2) - 1 ]/(3x^2)
=lim(x->0) x^2/(3x^2)
=1/3
=lim(x->0) [ ∫(0->x) e^(t^2) dt - x ]/x^3
洛必达
=lim(x->0) [ e^(x^2) - 1 ]/(3x^2)
=lim(x->0) x^2/(3x^2)
=1/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询