设n阶方阵A满足A²=2A.证明A的特征值只能是0或2
1个回答
展开全部
证明:设a是A的特征值
则a^2-2a 是 A^2-2A 的特征值
因为 A^2-2A = 0
所以 a^2-2a = 0
所以 a(a-2) = 0
所以 a=0 或 a=2.
即A的特征值只能是0或2.
则a^2-2a 是 A^2-2A 的特征值
因为 A^2-2A = 0
所以 a^2-2a = 0
所以 a(a-2) = 0
所以 a=0 或 a=2.
即A的特征值只能是0或2.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询